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Abstract. Water stress is a significant environmental factor that hampers plant

productivity and leads to various physiological and biological changes in plants. These

include modifications in stomatal conductance and distribution, alteration of leaf water

potential & turgor loss, altered chlorophyll content, and reduced cell expansion and

growth. Additionally, water stress induces changes in the emission of volatile organic

compounds (VOCs) across different parts of the plants. This study presents the

development of an electronic nose (E-nose) system integrated with a Deep Neural

Network (DNN) to detect the presence and levels of water stress induced in Khasi

Mandarin Orange plants. The proposed approach offers an alternative to conventional

analytical methods that demand expensive and complex laboratory facilities. The

investigation employs the leaf relative water content (RWC) estimation, a conventional

technique, to evaluate water stress induction in the leaves of 20 plants collected over a

span of 9 days after stopping irrigation. Supervised pattern recognition algorithms are

trained using the results of RWC measurement, categorising leaves into non-stressed or

one of four stress levels based on their water content. The dataset used for training and

optimising the DNN model consists of 27,940 samples. The performance of the DNN

model is compared to traditional machine learning (ML) methods, including linear and

radial basis function Support Vector Machines (SVM), k-Nearest Neighbors (KNN),

Decision Tree (DT), and Random Forest (RF). From the results, it is seen that the

optimised DNN model achieves the highest accuracy of 97.59% in comparison to other

methods. Furthermore, the model is validated on an unseen dataset, exhibiting an

accuracy of 97.32%. The proposed model holds the potential to enhance agricultural

practices by enabling the detection and classification of water stress in crops, thereby

aiding in water management improvements and increased productivity.
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1. Introduction

Agriculture is a crucial sector that supports a considerable portion of the population by producing both

food and raw materials for human consumption and industry. But in the near future, agriculture is

anticipated to encounter a serious threat due to climate change. Global warming will lead to anomalies

in temperature and precipitation, causing a negative impact on agriculture, mostly in underdeveloped

countries [1]. Irregularities in rainfall can decrease crop yields and reduce agricultural productivity

[2]. Droughts are expected to become more severe because of climate change, leading to a decrease

in agricultural productivity. As a result, drought-affected areas are estimated to increase from 15.4%

to 44% by 2100 [3]. Drought is defined as the lack of sufficient water availability due to insufficient

rainfall over a prolonged period. Droughts happen when the amount of water in the soil is decreased

and atmospheric conditions result in a continuous loss of water through transpiration or evaporation

[4]. Drought can affect many biochemical and physiological processes in plants such as ABA (abscisic

acid) signalling, ion transport, and transcription factors (TFs) activities [5], affecting crop growth and

the soil’s ability to retain moisture [5].

In addition to that, plants emit a wide range of volatile organic compounds (VOCs) from different

parts, such as leaves, flowers, roots, etc. Plants generate these VOCs through various physiological

processes and within their different tissues. Changes in VOC emission serve as an involuntary response

of plants to alleviate the effects of stress. In 1995, R. C. Ebel, J. P. Mattheis, and D. A. Buchanan

discovered that, like other types of stresses, water stress significantly alters the VOC profile of plants

[6].

Water stress detection methods need to be optimised at various growth stages of plants.

Conventional techniques for assessing plant stress predominantly rely on in-situ methods, which involve

measuring variables such as soil moisture and meteorological conditions. These measurements are

used to calculate the decrease in moisture within the plant-soil system over a specific time period.

S. O. Ihuoma et al. in 2017 [7] discussed different methods for diagnosing water stress in plants.

These methods include the gravimetric method, utilisation of soil moisture sensors, soil water balance

calculations, measurement of stomatal conductance, estimation of leaf water potential and content, as

well as remote sensing methods. Another method, known as crop reflectance monitoring, reported by N.

Katsoulas et al. in 2016 [8] involves measuring the variations in plant’s reflectance, and this information

was utilised to identify the conditions that subject plants to stress. Several other methods were also

adopted by researchers to detect the water stress status in different plants, including thermography for

canopy temperature measurement [9], the use of a pressure chamber [10], estimation of leaf chlorophyll

fluorescence [11], and monitoring the VOC profile [12].

In recent years, the use of an E-nose system for VOC detection has gained considerable attention

among the various available methods. This method offers several advantages, including rapid response

times, cost-effectiveness, minimal sample preparation, and procedures. Furthermore, one of the notable

advantages of using an E-nose system is that it eliminates the requirement for highly skilled professionals

to conduct the experiments [12]. An E-nose system collects the VOCs emitted by the leaves of the

plants, recognises the gas mixture, and outputs results in the form of fingerprints that represent the

unique odor profile of that particular plant. Table 1 describes the difficulties encountered when utilising

various methods for detecting water stress in plants.

An E-nose system consists of several key components, including a chemical sensing unit, readout

interface circuits, and a soft computing unit for gas recognition. The chemical sensing unit is composed

of an array of gas sensors that can detect and respond to different odors with varying sensitivity [13].

The readout interface circuit within the E-nose system converts the sensor outputs into usable electrical

signals and stores the data for further analysis [14]. The output of the interface circuit will then be fed

to the soft computing unit, which will use various pattern recognition algorithms to provide the final

recognition result.

Noise from the E-nose signals can be removed using signal processing techniques such as Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis

(QDA), mother wavelet, etc. The methods employed for signal processing aim to determine the optimal
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parameters that accurately identify the properties of each signal [15]. In order to overcome the noise

contamination of the E-nose signals when monitoring beef quality, the discrete wavelet transform and

long short-term memory (DWTLSTM) signal processing technique was proposed by D. R. Wijaya et

al. in 2021 [16] and obtained a performance of 94.83% accuracy. A multivariate analysis of variance

(MANOVA) test like Wilks’ lambda (Λ)-statistics can also be performed to reduce the unwanted noise

from the E-nose signals [17]. Other signal processing methods, such as Mahalanobis distance and

genetic algorithm, as well as LDA, PCA, and Wilks’ lambda statistics, were described by H. Sun et al.

in 2017 [18] to reduce the dimension of an E-nose system’s output. The reduced dataset must then be

fed into machine-learning (ML) methods to produce the recognition result.

Traditional ML algorithms like SVM, KNN, DT, RF, etc. have been adopted by several researchers

[19]. These techniques and their combinations are extensively used since they are simple to integrate

into the system. Fanglin Mu et al. in 2020 [20] reported a work where the features of the output

of an E-nose system were first analysed by signal processing techniques like (LDA), and (PCA) for

dimension reduction, and later the ML methods were utilised to obtain the classification model. The

best performance was obtained with an accuracy of 95% using the LDA-SVM model to identify the

milk source (dairy farm). Similar work has been reported by Xiuguo Zou et al in 2022 [21] for apple

quality grading, and used combinations of ML models such as PCA–KNN-SVM (96.45% accuracy) and

LDA–KNN-SVM (97.78% accuracy) to improve the accuracy of the learning. The bootstrap ensemble

K-Nearest Neighbors (KNN) based prediction model was reported in authors’ previous work [22] to

obtain better predictive results after using signal processing methods like radial plotting and Wilks’

Λ-statistics and achieved maximum accuracy of 99.54%.

ML techniques, however, are not well suited for recognising multiple odours because their anti-

noise ability is low, and as discussed earlier, to provide a significant recognition rate the dataset must be

passed through several stages. Furthermore, these traditional pattern recognition methods are proven

to provide better accuracy when the sample size is small and the number of gas sensors is limited

[23, 24]. With the improvement of AI (artificial intelligence) over the past few years, Artificial Neural

Network (ANN)-based pattern recognition circuits have been shown to be more successful with flexible

topologies [25, 26].

In this study, the authors aim to develop a DNN model specifically designed for a custom-

developed E-nose to predict various classes of water stress applied to Khasi Mandarin Orange plants.

The performance of the DNN model is compared with several traditional machine learning methods

commonly used for classification tasks. These methods include linear and radial basis function Support

Vector Machines, KNN, DT, and Rf classifiers. By comparing the performance of the DNN model with

these established techniques, the authors aim to assess its effectiveness in predicting and classifying

different levels of water stress accurately. To validate the induction of stress in the plants throughout

the study, the RWCs of the leaves are simultaneously measured. By measuring RWC in five distinct

levels of water-stressed plants, the authors are able to establish a reliable and standardised framework

for measuring water stress in the experimental setup.

2. Methodology

A portable and low-cost E-nose system is developed and used to assess water stress in Khasi Mandarin

Orange plants. Detailed experimental procedures for the creation of the prototype and analysis of the

samples are provided in the subsequent sections of the paper.

2.1. Prototype Development

In Figure 1, the block diagram of the prototype E-nose system is shown. The different parts of the

developed prototype are described below.
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Table 1. Comparisons of different water stress detection methods

Sl. No. Authors Technique used Challenges

1 Max Gerhards et al
(2019) [27]

Thermal infrared
(TIR)

Missing temperature thresholds for
irrigation scheduling, limited un-
derstanding of spectral emissivity
and environmental stress on leaf
traits, absence of suitable TIR
satellite missions, and lack of ap-
propriate data processing methods
for TIR remote sensing.

2 Zhuoya Ni et al
(2015) [28]

Leaf-level measure-
ments of chlorophyll
fluorescence and
temperature data

Requirement of costly laboratory
equipment & expert operator, high
sample preparation time

3 M. P. González et al
(2006) [29]

Crop water stress
index (CWSI) mea-
surement

The effectiveness of using CWSI to
measure water stress depends on
the level of crop stress, as it is reli-
able for low stress, moderately sen-
sitive for moderate stress, but not
recommended for highly stressed
crops

4 J. M. Fernández et al
(2016) [30]

Satellite-based soil
moisture measure-
ment

Cost of the sensors & requirement
of expert operator

Figure 1. The block diagram of the system

2.1.1. The Gas Sensor Array: In the E-nose prototype, twelve gas sensors are used (shown in

Figure 2) to detect the changes in the surrounding airflow. Prior to recording the experimental data,

the reference or base resistance values for each gas sensor are determined by introducing fresh air into

the sensing chamber. When the leaf-emitted VOCs enter the sensing chamber along with the analysed

air, the sensors react to them by altering their output resistance values. The specifics of the sensors

used to fabricate the gas sensor array are given in Table 2.

2.1.2. Sample Holder: In the prototype, the sample holding chamber is positioned above the

sensor chamber (as shown in Figure 1). An air pump is used to circulate the air, which contains the

VOCs emitted from the sample held in the sample holder, between the two chambers.
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Table 2. Information of the gas sensors used

Name of the
sensors Target gases

Name of the
sensors Target gases

TGS 2602 NH3, HS, C7H8, and C2H5OH MQ6 LPG, C4H10, and C3H8

TGS 2610 CH3CH2OH, H2, CH4,
HC(CH3)3, and C3H8

TGS 2603 Odor and air contaminants

TGS 2611 CH4 MQ5 Extremely sensitive to LPG, natu-
ral gas, and town gas. Small sensi-
tivity towards smoke and alcohol

TGS 822 CH4, C4H10, C6H14, C6H6,
C2H5OH, CO, and C3H6O

MQ3 High sensitivity for alcohols & less
sensitive to C6H6

TGS 2620 CH4, CO, C4H10, H2, and
C2H5OH

MQ2 LPG, C4H10, C3H8, CH4, alcohol,
H2, and smoke

TGS 2600 Sensitive towards gaseous air con-
taminants

MQ4 Extremely sensitive to CH4 and
natural gas, with only a minor
sensitivity to alcohol and smoke

2.1.3. Signal Conditioning Circuit: The signal conditioning circuit shown in Figure 2 generates

an equivalent voltage output by converting the resistance change at the gas-sensitive surface of the

sensors into a voltage signal. This conversion is achieved through the implementation of a potential

divider circuit arrangement within the signal conditioning unit of the developed prototype.

2.1.4. Data Acquisition Unit: The Data Acquisition System (DAQ) utilises an 8-bit Atmel

ATmega2560 microcontroller and a 16-channel 10-bit Analog to Digital Converter (ADC), which can

handle input voltages from 0V to 5V (as shown in Figure 2). The outputs of the signal conditioning

unit are sent to the ADC. The microcontroller collects these digitised signals at a rate of 12 samples

per second. Eventually, the ADC outputs are sent to a personal computer via a USB host interface for

storage and analysis with data analysis algorithms.

Figure 2. Diagram of the E-nose prototype

2.2. Experimental Sample Preparation

Twenty Khasi Mandarin Orange plants grown in pots (with a top diameter of 30 cm, base diameter of 20

cm, and 28 cm height) are used in the experiments. The physical parameters like temperature, humidity,

and light exposure are kept constant for two weeks before starting the experiments. Plants are provided
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with 162.85ml/day of water during this period. In order to estimate this value of optimum water

supply, factors such as crop evapotranspiration, ETc ([mm day−1]) and reference evapotranspiration,

ET0 ([mm day−1]) must be calculated. The equations to calculate these factors are shown below (the

detailed calculations were reported in the author’s previous work [31]).

ET0 =
0.408△(Rs−Gf ) + γ 900

T+273Vs(ep − ea)

△+ γ(1 + 0.34Vs)
(1)

ETc = KET0 (2)

where, the parameters Rs, Gf , γ, T, Vs, ep, ea, △, K describes net radiation of the surface of

the crop, heat flux density, psychrometric constant, mean temperature calculated daily at 2m height,

speed of wind at a height of 2m, saturation vapour pressure, vapour pressure actual, slope of the vapour

pressure curve, and crop coefficient, respectively.

After two weeks of observation, the irrigation to the target plants is halted. The leaf samples are

excised on the 1st, 3rd, 5th, 7th, and 9th day after stopping the irrigation to perform the measurements.

2.3. Physiological Measurements

Figure 3. The value of RWC

calculated on the day of measure-

ments

The RWC measurements of excised leaves are

performed to justify the water stress induction in

the sample plants. On each day of measurement,

six leaves are kept for RWC measurement. The

following equation is used to calculate the RWC of

the leaves.

RWC =
(WF −WD)

(WT −WD)
X100 (3)

where, WF , WD, and WT are fresh mass, dry

mass, and turgid mass of the excised leaf samples,

respectively [32]. In Figure 3, the values obtained

after RWC calculation are provided. From this

figure, it can be inferred that the leaf RWC values

show a negative trend after stopping the irrigation

of the sample plants.

3. Data Collection and Analysis

3.1. Collection of Experimental Data

Before taking the measurements, the excised leaf

samples are placed in the prototype’s sample

holding chamber.

3 g of excised Khasi Mandarin Orange leaves are included in each sample set. The signatures of

the VOCs are recorded for 240 seconds using twelve gas sensors that comprised the sensor array. A few

samples had to be discarded due to null readings in some instances. A total of 27940 samples are taken

on the first, third, fifth, seventh, and ninth days after stopping the irrigation, and the conditions of the

plants on each day are labelled as non-stressed, Stress-A, Stress-B, Stress-C, and Stress-D, respectively.

For the sake of a detailed comparative analysis, traditional ML approaches along with deep

learning neural networks with various parameters are considered.

3.2. ML Approach

ML algorithms including SVM, KNN, DT, and RF are used for the recognition and classification of the

dataset. Prior to classification, the entire dataset is divided into 70:30 train-validation sets.
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3.3. Deep Learning Approach

Figure 4. Data collection and

analysis protocol

DNN is used in this work to classify plant

stress conditions. 19,558 samples (70%) are

used for training, and 8382 (30%) are used for

validation of the model’s performance. The

data is normalised, and categorical variables

are converted into binary vectors using one-

hot encoding. A neural network learns how to

classify accurately by minimising errors during

the training phase. Each neuron’s output is

defined by an activation function, and the error is

monitored with the help of a loss function. The

goal is to reduce the loss to as close to zero as

possible. The flowchart for data processing using

DNN is shown in Figure 4.

3.3.1. Loss Function: Categorical cross-

entropy is used as a loss function during the

training of the model. It is used in multi-class

classification problems. The goal is to minimise

the loss, which means that the smaller the loss,

the more efficient the model is.

CCE = −
n∑

i=1

tilog(pi) (4)

where n is the no. of classes, (Pi) is the

softmax probability and (ti) is the true label

for the ith class. The negative sign helps to

ensure that the loss decreases as the distributions

approach each other.

3.3.2. Optimisation: Optimisation algo-

rithms minimise the loss function by changing the

network’s parameters, such as weights and the

learning rate. Initially, the model starts training

with an initial learning rate value. With succes-

sive epochs, the optimiser continuously adjusts

the learning rate for the best possible loss. In

this work, the model is trained using five opti-

misers: Adam, Adagrad, Adadelta, Root Mean

Squared Propagation (RMSProp), and Adamax, one at a time.

3.3.3. Evaluation Metrics: Accuracy is used as a metric to evaluate the training and validation

of the DNN model. It can be used for both binary and multi-class classification problems. Accuracy is

defined as the proportion of true outcomes in all instances investigated.

In all, ML algorithms SVC, KNN, DT, and RF, and DNN models with Adam, Adagrad, Adadelta,

RMSProp, and Adamax optimisers are used for comparative analysis.
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4. Results

The classification results obtained for the SVM classifier with linear and rbf kernels, along with

hyperparameter tuning, are shown in Figure 5. To achieve the highest classification accuracy with

the SVM classifier, it is necessary to adjust the parameters C and gamma. The C parameter creates a

balance between accurately classifying the training samples and maximising the margin of the decision

function, while the gamma parameter determines the level of influence a single training sample should

have. As shown in the figure, the SVM (linear) classifier demonstrates that gamma had little to no

effect on the model’s performance, while C=10 achieved the highest accuracy of 73.7%. In the case of

the SVM (rbf) classifier, the parameter C is varied from 1 to 1000, and gamma is varied from 0.01 to

0.1. The best accuracy of 96.5% is obtained with C=1000 and gamma=0.1.

[a] [b]

Figure 5. Classification scores with different hyperparameters in SVM classifiers with

[a] linear kernel [b] rbf kernel

The KNN classifier’s nearest neighbors value is determined to be 6 after multiple training runs,

resulting in an accuracy of 94.75%. ‘Gini’ criterion is used for DT and RF classifiers. The RF classifier’s

n-estimator value of 100 results in the best accuracy of 93.53%. The classification results obtained using

each classifier are given in Table 3.

To train the DNN model, different combinations for the number of neurons in each layer are

tested and the number of hidden layers is also adjusted to achieve the best classification accuracy.

Even though Adam is one of the best-known optimisers, other popular optimisers are also considered

for training the model. Instead of treating the learning rate as a hyperparameter, RMSProp uses an

adaptive learning rate. The algorithm divides the learning rate by an exponentially decreasing average

of squared gradience and aids in resolving Adagrad’s radically decaying learning rate. This is the

reason why RMSProp achieves a better validation accuracy of 97.15% compared to Adagrad’s 38.24%

and Adadelta’s 35.51%.

With the Adam algorithm, the accuracy has been achieved at 97.27% compared to other adaptive

learning methods. The Adam optimiser is a combination of momentum and the RMSProp optimiser.

It combines averages of moving gradients like momentum and utilises the squared gradient to do so like

RMSprop to adjust the learning rate parameters. As for Adamax, it is an extension of Adam’s gradient

descent that generalises the approach to the maxima and may lead to more effective optimisation of

some problems. This can be the reason, why it performs slightly better than Adam with a validation

accuracy of 97.59% [33, 34]. The higher training accuracy of SVC (rbf) can be attributed to overfitting.

4.1. Final Architecture

The DNN model using Adamax optimiser with an initial learning rate of 0.00001 and three hidden

layers had the best validation accuracy of 97.59%. The architecture of this model is shown in Figure 6.

The model proposed in this work contains 5 layers along with the input layer. All layers have the ReLU
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Table 3. Performance results of different ML and DL techniques in classifying water

stress levels in leaves

Sl. No. Model Used
Training
Accuracy

Validation
Accuracy

1 SVM (rbf) 98.35% 96.5%

2 SVM (linear) 87.28% 73.7%

3 KNN 97.25% 94.75%

4 DT 97.95% 94.43%

5 RF Classifier 96.86% 93.53%

6
DNN
optimizer = Adagrad 39.78% 38.24%

7
DNN
optimizer = Adadelta 35.61% 35.51%

8
DNN
optimizer = RMSprop 97.35% 97.15%

9
DNN
optimizer = Adam 97.43% 97.27%

10
DNN
optimizer = Adamax 97.53% 97.59%

Figure 6. Architecture of the proposed DNN model
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(Rectified Linear Unit) activation function. When the input of the neuron is negative, the function

outputs 0; otherwise, it returns the same value as the input, as shown in eq. 5.

f(n) = max(0, n), where n is neuron input (5)

The input layer consists of 400 units. The number of units is taken as 200, 150, and 100 in the

subsequent hidden layers. The number of units in the output layer is taken as 5 to classify the five

stress levels and utilises softmax as the activation function.

While training, the validation accuracy is monitored at the end of every epoch of the model.

When no further improvement is seen after 50 successive epochs, the training is terminated. In Figure

7, the accuracy at the end of every epoch for each classifier is shown. The total number of epochs varies

depending on the optimiser used. For instance, the Adamax optimiser stops training after 930 epochs as

no further improvement in accuracy is observed. On the other hand, the models with RMSProp, Adam,

Adadelta, and Adagrad optimisers stop training after 445, 597, 357, and 999 epochs, respectively.

Figure 7. Variation of accuracy during training of the model

As shown in Table 4, various matrices, including F1 score, precision, and recall, are computed to

evaluate the model corresponding to five distinct levels of water stress.

Figure 8 depicts the confusion matrix for the model, with the true class labels on the y-axis and

the predicted class labels on the x-axis.

Table 4. Classification report of the DNN model on the dataset used for validation

Class Precision Recall F1-score Overall accuracy

Non-stressed 0.9471 0.9892 0.9677
Stress-A 0.9973 0.9899 0.9936
Stress-B 0.9906 0.9958 0.9932 97.59%
Stress-C 0.9580 0.9808 0.9692
Stress-D 0.9595 0.8749 0.9152
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The capability of a classifier to avoid classifying a negative event as positive is known as precision

(P). In Figure 8, the precision in classifying a sample of Stress-C can be calculated as shown in eq. 6.

Out of 1334 Stress-C predictions, 1278 are correctly classified as Stress-C.

Precision =
1278

1334
= 0.9580 (6)

Figure 8. Confusion matrix of the classifier for the validation set

Recall (R) is the ability of the classifier to identify all the positive events. It is calculated as the

ratio of true positives to the sum of true positives and false negatives for each class as shown in eq. 7.

In the case of Stress-C, out of a total possible 1303, 1278 are correct whereas 25 are false negatives.

Recall for Stress-C can therefore be estimated as:

Recall =
1278

1303
= 0.9808 (7)

To compare classifier models, F1-score is utilised. It provides the weighted harmonic means of

recall and precision, with 1 representing the best result and 0 the worst. Considering the precision and

recall for Stress-C, the F1-score can be calculated as shown in eq. 8.

F1 = 2× P ×R

P +R
= 0.9692 (8)

4.1.1. Performance of the model on new test data For any instrument or algorithm,

repeatability is a primary concern. Therefore, it is important to verify the performance of a DNN

model with an unseen or new dataset.

The experimental setup is used to collect 3120 additional data for the final performance evaluation

of the proposed model. In Table 5, the classification report of the test dataset is provided. The

classification results obtained for random 10 data points out of a total of 3120 data points are shown

in Table 6. It basically evaluates the probability of each class. When the model’s degree of confidence

for a data point is greater than 50% for a specific class, that class is chosen.
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Table 5. Classification report of the DNN model on new and unseen experimental

dataset
Class Precision Recall F1-score Overall Accuracy

Non-stressed 0.9531 0.9875 0.9700
Stress-A 0.9944 0.9875 0.9909
Stress-B 0.9880 0.9933 0.9906 97.32%
Stress-C 0.9690 0.9864 0.9776
Stress-D 0.9665 0.9004 0.9323

Table 6. Prediction with new data

Sl. no True Class
Probability of the tested sample belonging to

Predicted class
Non-stressed Stress-A Stress-B Stress-C Stress-D

1 Stress-A 1.13E-07 0.579459 0.420412 3.96E-10 0.000129 Stress-A

2 Stress-C 1.51E-14 4.81E-08 0.000162 0.999815 2.30E-05 Stress-C

3 Stress-A 8.12E-12 0.999792 0.000208 9.03E-16 1.45E-11 Stress-A

4 Stress-D 0.00478 4.68E-05 4.80E-07 0.002286 0.992887 Stress-D

5 Stress-D 4.82E-07 9.70E-10 5.54E-05 0.000827 0.999117 Stress-D

6 Stress-C 1.37E-12 2.82E-09 3.28E-05 0.996383 0.003584 Stress-C

7 Stress-C 1.71E-14 3.13E-07 0.001316 0.998675 9.33E-06 Stress-C

8 Stress-D 1.04E-12 1.72E-10 1.36E-05 0.5667648 0.43322164 Stress-C

9 Non-stressed 0.994153 8.66E-05 2.01E-08 2.88E-34 0.00576 Non-stressed

10 Stress-C 3.16E-13 9.10E-11 8.27E-06 0.619269 0.380723 Stress-C

5. Conclusion

This paper describes a detailed comparative analysis to classify water stress levels in Khasi Mandarin

plants from a prototype E-nose system. The accuracy of the DNN model using the Adamax optimiser

and 3 hidden layers is found to be the highest. The proposed model correctly classified 5 levels of water

stress with an accuracy of 97.59%. The performance of the model is further verified on a new and

unseen dataset on which its accuracy is 97.32%. However, the classifier does not always classify two

adjacent classes with a high degree of confidence. Table 6 shows that the model misclassifies some of

the adjacent classes with a very small margin of confidence, as can be seen in serial numbers 1, 8, and

10.

Table 7 shows that previous studies have shown promising results in detecting water stress in

plants. The author’s previously reported ML classifier [22] was able to detect water stress with an

accuracy of 99.54%, but it was unable to distinguish between different levels of stress. In contrast, the

works of [36], [37] and [38] proposed deep learning approaches to detect crop water stress from images

captured, which showed particularly promising results. However, the performance of their models

remains to be tested under different luminosity conditions. The system reported in this work, on the

other hand, can take measurements at any time of the day, making it more versatile. This method will

enable us to quickly determine the level of induced water stress in Khasi Mandarin plants at any point

in time. The model will be particularly useful in the agricultural sector, allowing end-users to detect

water stress in plants and verify whether it is due to the shortage of irrigation water or the presence

of other factors hindering plant growth. However, in the near future, the same system can be used to

collect data on the same set of plants under different environmental conditions. This work may further

be extended by developing an automated real-time monitoring system that could alert farmers to water

stress in their plants as soon as it is detected.
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Table 7. Comparison with past studies of machine learning applications in food and

agriculture

Sl. No. Authors Technique used Application Accuracy

1 Authors’ pre-
vious work
(2022) [22]

E-Nose and boot-
strap ensemble
K-Nearest Neighbors
(KNN) with radial
plotting and Wilks’
Λ-statistic

E-nose and ML classifier
used to detect water
stress

99.54%

2 S. S. Virn-
odkar et al
(2020) [35]

Remote sensing and
machine learning

For crop water stress
determination

83.3% (RF) and
78.3% (XGBoost)

3 M.P. Islam et
al (2021) [36]

Deep Neural Net-
work with 417 layers.
Pictures of plants
collected using
smartphone

Detection of water stress
in pot-cultivated peach
plant

93.00%

4 N. S. Chandel
et al (2021)
[37]

Deep learning
models (Alexnet,
GoogLeNet and
Inception V3)

Crop water stress detec-
tion

The better results
were obtained with
GoogLeNet (98.3%
for maize, 97.5% for
okra, and 94.16% for
soybean)

5 O. Elsherbiny
et al (2022)
[38]

A novel hybrid deep
network using IoT-
based multimodal
data

Diagnosing water status
in wheat crop

100% with a loss of
0.0012

6 Present
work

E-nose system allied
with a DNN model

Used to detect the pres-
ence of water stress and
classify it into five levels

97.59% (classifi-
cation accuracy),
97.32% (Unseen
data)
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