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Abstract—Ground Penetrating Radar (GPR) is a preferred
non-destructive method used for the identification and locali-
sation of subsurface targets. Hyperbolic signatures present in
GPR B-Scans can provide valuable insights about the shape,
material and the distance at which target objects are buried
below the surface. This paper presents an innovative approach
to enhance GPR data analysis, specifically focusing on hyperbola
detection within GPR B-Scans. Preprocessing steps, such as
dewow filtering, frequency filtering, and gain compensation, are
used to improve GPR data quality. A comparative analysis is
conducted on the performance of Canny, Sobel, and Scharr edge
detectors in identifying hyperbolic signatures. By merging the
Canny edge detection algorithm with the Column-Connection
Clustering (C3) method, common limitations of conventional
clustering, particularly their sensitivity to noise and outliers
are addressed. Finally, the efficacy of the proposed method
is evaluated by calculating the R-squared values of the fitted
hyperbolas which was found to be > 0.93.

Index Terms—ground penetrating radar, edge detection algo-
rithm, hyperbola detection, column-connection clustering (C3),
sub-surface imaging

I. INTRODUCTION

Ground penetrating radar (GPR) employs electromagnetic
waves to look beneath the surface of the earth [1]. A-Scan is a
one-dimensional representation of GPR data, which is formed
by capturing the time-series of the reflected wave signals. B-
Scan is a two-dimensional representation of the data which is
formed when several A-Scans are collected along a specific
direction [2].

GPR is used in numerous fields for various applications like
road inspection, bridge assessment, underground utility eval-
vation [3], landmine detection [4], non-destructive survey of
archaeological sites [5] etc. GPR enables the non-destructive
evaluation of various structures and helps ensure their integrity
and safety [3].

II. LITERATURE REVIEW

The scattering of transmitted pulses from buried objects
create hyperbolic features within GPR B-Scans. Unprocessed
GPR data can provide a detailed map of the shallow subsur-
face, but interpreting this data accurately can be challenging.
However, by applying different signal processing techniques,
the standard of GPR images from the test site can be greatly
enhanced. Multiple methods employed for processing the
signals include filtering techniques to remove low frequency
components (dewow) [6], applying gain, time-zero correction,
migration, bandpass filtering, background removal and veloc-
ity analysis [7], [8].

The implementation of the pre-processing techniques is
usually followed by the implementation of edge detectors.
This further enhances the GPR images and accurately traces
the edges of the hyperbolic features. Canny [9] and Sobel [4]
filters are two widely used edge detectors.

Hyperbolic features signify the existence of buried items
such as cables, pipelines, geological formations, historical
relics, and even explosive devices [10]. The task of recognising
and pinpointing these hyperbolic patterns becomes imperative
for proper interpretation of GPR data. Following detection, ap-
propriate techniques are applied to fit the identified hyperbolas.
The fitted hyperbolas provide diverse insights, encompassing
target recognition [11], depth estimation [12], and determina-
tion of target dimensions [13], among others.

Numerous approaches have been suggested for detecting the
hyperbolas present in GPR B-Scans. Altin et al. implemented
Otsu thresholding and Hough transformation to extract soil
planes in GPR B-Scans [14]. Curve-fitting techniques in
conjunction with neural networks have also been employed
to detect buried objects and estimate their positions [15].

Various clustering algorithms like the column-connection



clustering (C3) algorithm [16], open-scan clustering algo-
rithm, double cluster seeking estimate [17], slice-connection
clustering algorithm [18] are employed to detect the hy-
perbolic signatures. The column-connection clustering (C3)
algorithm detects regions in GPR data that potentially contain
hyperbolas. These regions are subsequently categorised into
clusters. In the study by Dou et al. an adaptive thresholding
algorithm was utilised to distinguish the potential hyperbola-
containing regions from the background [16]. Subsequently,
the C3 algorithm was employed to differentiate the identified
regions from each other. Hough transform and C3 algorithm
were utilised by Kafedziski et al. to detect hyperbola and
estimate the precise target depth on data obtained from the
Web and simulation using gprMax [19]. Wunderlich et al. used
RetinaNet, a deep learning model for automated detection of
hyperbolas [20]. The accuracy of the detected hyperbolas was
verified by assessing them in relation to manual determinations
of velocities and apex points. The findings indicated that the
most efficient approach for extracting hyperbolas involved
utilising a threshold and the C3 algorithm, followed by a direct
hyperbola fitting process.

While the clustering algorithms specified have been em-
ployed to detect hyperbolic signatures in various contexts,
including GPR data analysis, there exist multiple drawbacks
associated with their usage. Clustering algorithms can be
sensitive to noisy or outlier data points. Given the existence
of noise, the clustering results may be distorted, leading to
inaccurate detection of hyperbolic signatures. Outliers, if not
handled properly, can also disrupt the clustering process and
affect the formation of meaningful clusters. Edge detection
algorithms emphasise the boundaries between different mate-
rials or subsurface layers. By accentuating the edges, these
algorithms can improve the visual interpretation of the GPR
data, making it easier to identify and understand the subsurface
structures.

This study presents an innovative approach by integrating
the Canny edge detection algorithm along with C3 algorithm
to identify the presence of hyperbolas in GPR B-Scans.

III. GPR DATA COLLECTION

The dataset employed in this study was collected at the
Geosciences and Technology division in NEIST (Jorhat). A
commercial GPR sytem (pulseEKKO PRO) was utilised for
the data collection. In total, 151 A-Scans were recorded, each
having 250 samples. The separation between the transmitter
and receiver antennas was 0.5 m and were operated at a centre
frequency of 200 MHz. The GPR B-Scan image is shown in
Figure 1.

IV. METHODOLOGY

This section describes the various preprocessing techniques
employed in this study. Python programming language is used
to implement these techniques.
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Fig. 1: Plot of unprocessed GPR data
A. Dewow

The GPR A-Scan contains a low-frequency component
called the ‘wow’ that originates from various factors like
the separation between the transmitter and receiver and the
ground’s electrical properties. This ‘wow’ effect is charac-
terised by a sudden onset, reaching a peak, and subsequently
decaying exponentially [6]. It is present in every raw radar
recording and appears alongside the higher frequency reflec-
tions in the data. Dewow filtering is the removal of the low-
frequency component.

This work applies an average subtraction filter to eliminate
the wow component. This filter operates differently in accor-
dance with the window size relative to the overall quantity
of samples. In this study, the dimensions of the window is
considered to be less than the total count of samples. The
average of half the window size is subtracted from each sample
of every A-Scan. The resulting information is stored in a
new matrix. By applying this technique, the low-frequency
wow component is effectively removed, allowing for data
normalisation and facilitating the utilisation of positive and
negative colour filling in the displayed traces.

B. Frequency filtering

To improve the visual quality of the data and remove
unwanted noise, various filters can be put to use on the GPR
B-Scans to enhance the clarity of the information and aid in
the interpretation process.

A spatial median filter is applied in this work. This filter
operates on each sample of the B-Scan by selecting neighbour-
ing samples within a specified window. As the window slides
through the B-Scan, the median value of the samples within
the window is computed. The median value is calculated
by sorting the neighbouring samples in ascending order and
selecting the middle value. The current sample in the B-Scan is
then replaced with the calculated median value. This procedure
is iterated for all samples in the B-Scan image. The median
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Fig. 2: GPR B-Scan after applying dewow, frequency filtering
and gain

filter is particularly effective in removing impulsive noise or
outliers from the signal.

C. Gain

As the GPR signal propagates through the ground, certain
portions of the reflected signal become attenuated or lost.
This causes the signal to weaken as the depth increases. To
address this issue, compensating gain is applied to the data.
This enhances the visibility of all targets as much as possible
without amplifying the inherent presence of noise in the data.
In this study, power gain is used. Mathematically, it can be
depicted by the equation:

zg(n) = z(n) x n® (1)

Here, o is a parameter that needs to be selected. x4(n)
represents the sample obtained after applying the gain. The
gain is calculated by raising the sample index (n) to the power
of a. The processed image at this stage is shown in Figure 2.

D. Feature Extraction

Edge detection is an essential image processing method
employed to detect and highlight borders or edges of objects
within an image. The purpose of performing edge detection
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is to extract important information from an image by locating
abrupt changes in intensity or colour, which typically corre-
spond to object boundaries or transitions between different
regions within the image. Canny, Sobel and Scharr edge
detection algorithms are used in this work.

It is observed that Canny edge detector yields better results
than Sobel and Scharr methods. This is due to its accurate
localisation, low error rate, robustness to noise, and ability
to provide single edge responses. The Figure 3 illustrates a
sequence of images showcasing a GPR B-Scan along with
the outcomes of Canny, Sobel, and Scharr edge detection
algorithms applied to the GPR B-Scan data.

E. Column-Connection Clustering (C3) Algorithm

After the edges are detected in the image, C3 algorithm is
used to segregate the regions that potentially contain hyper-
bolas. The C3 algorithm consists of two crucial components:
Column segment and Connecting elements.

Column segment: A Column segment refers to a con-
secutive set of points along a column in the image. To be
recognised as a column segment, the count of successive
points within the cluster must meet or exceed a predetermined
threshold value (in this work, 3). The purpose of setting this
threshold is to effectively filter out noise and ensure that the
segment contains meaningful information.

Connecting elements: Connecting elements refer to the
points within a column segment that share the same row
number. When two column segments adjacent to each other
have connecting elements, it indicates that they have points
in common along the same row. In the C3 algorithm, the ele-
ments of adjacent column segments in neighbouring columns
are compared. If connecting elements are found, the cluster
extends to the next column, incorporating the elements from
the subsequent column segment. This process is carried on
for all columns, generating clusters in accordance with the
connections between columns.

In short, the C3 algorithm analyses the columns of the
image by detecting column segments and connecting elements
to create clusters. It commences with the initial column
and extends the clusters to subsequent columns if there are
connecting elements present. This repetitive process carries
on until all columns have been examined, which culminates
in the establishment of distinct clusters in accordance with
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Fig. 3: (a) Original GPR Image, (b) Post-Canny Edge Detection, (c) Post-Sobel Edge Detection, (d) Post-Scharr Edge Detection



the connections between columns. Figure 4 demonstrates the
identification of a hyperbolic pattern within a GPR B-Scan
image by implementing the C3 algorithm.

LN
Foon

Fig. 4: Detected hyperbola in GPR B-Scan image using C3
algorithm

FE. Hyperbola Fitting

In GPR data interpretation, hyperbola fitting helps in iden-
tifying and distinguishing various subsurface targets based on
their hyperbolic signatures. In addition to that, it offers a way
to estimate the depth of buried targets. In this paper, the
hyperbola has been fitted using the standard equation of a
hyperbola:

2 2

(y—n)? _ (x—m)
2 32
where (m,n) represents the centre of the hyperbola, o
represents the semi-major axis and [ represents the semi-
minor axis. The coordinates of the hyperbolic feature obtained
from the C3 algorithm are used for hyperbola fitting.

=1, 2)

V. RESULTS
The proposed method for fitting hyperbola is first applied
on the GPR B-Scan data collected in the laboratory. Figure 5
shows the accurate fitting of hyperbola onto the GPR B-Scan
data.

Fig. 5: Hyperbola fitting on GPR B-Scan data

To evaluate the extent to which the fitted curve accurately
captures the changes seen within the actual data points, the R-
squared (R?) metric is calculated using the following formula:

SSI'CS

2
=1
R SO

3)

where, SS.s (sum of squares of residuals) represents the
sum of the squared differences between the actual values and
the predicted values from the fitted curve and 5SSy (total sum
of squares) denotes the sum of the squared differences between
the actual data points and the mean of all the predicted values.

Fig. 6: B-Scan Image A having multiple hyperbolic features
used for the verification of the algorithm
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Fig. 7: B-Scan Image B having hyperbolic features used for
the verification of the algorithm

The R? value achieved for the fitted hyperbola in Figure
5 is 0.949. As the R? value is observed to be closer to 1, it
denotes that a bigger amount of the variance in the data points
is explained by the fitted curve, suggesting a good fit between
the curve and the data points.
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Fig. 8: Fitted hyperbolas for the B-Scan images used for validation

A. Validation of the proposed algorithm

To verify the performance of the proposed method for fitting
hyperbolas, it was further applied on 2 different B-Scan images
shown in Figure 6 (Image A) and Figure 7 (Image B) obtained
from the data collected by [16]. The algorithm is applied to
hyperbolas marked as 1, 2 and 3 in Image A, and the fitted
hyperbolas for this image are shown in Figure 8 (a), (b) and
(c) respectively. Further, the algorithm is also employed for
the hyperbolas marked as 2 and 3 in Image B and the fitted
hyperbolas are shown in Figure 8 (d) and (e) respectively.

Table I shows a comparison of the R? values obtained for
the hyperbolas fitted using the proposed method.

TABLE I: Comparison of R? values for the fitted hyperbolas

SI. No. Hyperbola R? value
1 Hyperbola 1 of Image A 0.939
2 Hyperbola 2 of Image A 0.942
3 Hyperbola 3 of Image A 0.971
4 Hyperbola 2 of Image B 0.995
5 Hyperbola 3 of Image B 0.949

Fig. 9: B-Scan image shown in Figure 6 with the fitted
hyperbolas

The proposed method’s performance is quantified by R?
values, a metric that gauges the goodness of fit. For Image

A, we obtained R? values of 0.939, 0.942, and 0.971 for
hyperbolas 1, 2, and 3, respectively. When considering Image
B, hyperbolas 2 and 3 yielded R? values of 0.995 and
0.949, affirming the accuracy and robustness of our method
in capturing the hyperbolic signatures across diverse datasets.

Fig. 10: B-Scan image shown in Figure 7 with the fitted
hyperbolas

In Figures 9 and 10, a visual representation of the outcomes
of our verification process is provided. These figures illustrate
the fitted hyperbolas overlaid on the original GPR B-Scan
images, further corroborating the reliability and effectiveness
of our proposed algorithm. These results collectively affirm
the versatility and robustness of our method, which shows
potential for a range of applications, including subsurface
structure analysis and target localisation.

VI. CONCLUSION

In this study, a novel approach was presented integrating
the Canny edge detection algorithm with the C3 algorithm for
hyperbola detection in GPR B-Scans. The integration of these
techniques addressed certain constraints linked to conventional
clustering algorithms, particularly their sensitivity to noisy
data and outliers. The proposed methodology involved sev-
eral preprocessing steps, including dewow filtering, frequency
filtering, and gain compensation, to improve the quality of



GPR data. Additionally, edge detection algorithms, specifi-
cally Canny, Sobel, and Scharr, were used to identify object
boundaries and improve the visual interpretation of subsurface
structures. It was seen that Canny outperformed the other edge
detectors and hence it was finally used before applying the C3
algorithm.

The core of this approach lies in the application of Canny
edge detector with the C3 algorithm, which effectively seg-
regates regions potentially containing hyperbolic signatures.
Subsequently, a suitable hyperbola fitting technique was em-
ployed. The validation of this method on different datasets
demonstrated its robustness and versatility. High R? values
were achieved, indicating the accuracy of our hyperbola fitting
process. Figures 8, 9, and 10 visually confirmed the precise
alignment of hyperbolas on GPR B-Scan images. The results
underscore the potential of this approach in diverse applica-
tions, including subsurface structure analysis and target locali-
sation. By mitigating the limitations associated with traditional
clustering algorithms, this method offers a promising avenue
for enhancing the interpretation of GPR data and advancing
subsurface imaging technologies.
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