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ABSTRACT

A convolutional neural networks (CNN) model for predicting size of buried objects from ground
penetrating radar (GPR)B-Scans is proposed. As a pre-processing step, Sobel, Laplacian, Scharr,
and Canny operators are used for edge detection of the hyperbolic features. The proposed CNN
architecture extracts high level signatures in the initial stages of the model and learns additional
low-level features when the input data passes through the neural network to finally make an es-
timation of the required parameter. Artificially generated GPR B-Scans are used to train the
model. The proposed method demonstrates good performance in predicting buried object size.
Upon comparison, Scharr operator followed by a deep CNNmodel showed the best performance,
having the minimum mean absolute percentage error of 6.74 when tested on new, unseen data.

1. Introduction
Ground penetrating radar (GPR) is a nondestructive technique (NDT) that can be used for various applications

like archaeology, geological surveys, landmine detection, detection and mapping of subsurface utilities, detection of
subsurface structures such as tunnels and boreholes, etc.

Ever since the GPR technology came to force, the basic principles used in creating GPR images have remained
more or less the same. A GPR transmits pulses of electromagnetic waves at various frequencies depending on the
choice of the user and the type of application. Due to different dielectric properties, the boundaries of buried objects
and soil layers reflect radar waves back to a receiving antenna. The resulting radargram (GPR image) is an image of the
subsurface that shows the various regions of heterogeneity. The data collected during the survey needs to be processed
afterwards to improve and interpret the assessment. The hyperbolic feature is the most common shape found in B-Scan
images of GPR. It is a challenging task and requires highly skilled people to properly identify and classify the various
hyperbolic features in a GPR image. Additionally, corruption of GPR data due to noise creates added hurdles in the
interpretation of GPR data. Therefore, GPR data processing continues to be a challenge to the scientific community.

1.1. Literature Review
In recent years, a variety of methods have been proposed by researchers for the interpretation of GPR data. Torrione

et al. (2013) successfully applied the Histograms of Oriented Gradients (HOG) feature extraction technique to landmine
detection in GPR data to detect landmines and proposed that other image processing techniques may also be applied
for detection of targets in GPR data. A hyperbola fitting technique was used by Wahab et al. (2013) to estimate the
radius of buried pipes and cables. Ko et al. (2012) used Fourier Transform and Principal Component Analysis to detect
landmines in various burial conditions.

Considerable research has been done in the detection of hyperbolic features and determination of regions of interest
in GPR images for further interpretation of various parameters. Different strategies have been used on the topic of
hyperbola detection. Fitting algorithms like Radon (Dell’Acqua et al. (2004)), wavelet (Windsor et al. (2005)) and
Hough (Chen and Cohn (2010); Liu et al. (2019)) have been used for feature extraction in GPR images. Other feature
extractors like Sobel operators (Li et al. (2016)) and Canny operators (Mertens et al. (2015); Bugarinović et al. (2020))
are also used as a pre-processing step. Statistical approaches like least square (Chen and Cohn (2010)), fuzzy shell
clustering (Delbo et al. (2000)), moment of inertia optimization (Chaudhuri and Samanta (1991)) etc., have also been
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used to extract hyperbolic features. These methods usually involve multi-stage techniques. Initially, a region of interest
is determined and then a hyperbola fitting algorithm is applied to it. All these methods are computationally slow but
perform well from the point of view of accuracy and sensitivity.

Maas and Schmalzl (2013) proposed a multi-stage technique which could recognise and fit hyperbolae in real time.
They adapted OpenCV library to localise reflection hyperbolas in GPR B-Scans. The developed algorithm showed
promising results when applied on using realistic data. They used Canny operator for edge detection and Hough
transform for hyperbola fitting. Later, Dou et al. (2016) working on a similar problem, proposed a novel technique for
real-time hyperbola recognition by using a neural network classification algorithm. They used synthetic input images
of size 100 × 100 pixels. Due to the fast computation speed, both methods proposed by Maas and Schmalzl (2013)
and Dou et al. (2016) are suitable for real-time applications.

However, studies by Jacob and Urban (2016) have shown that under certain conditions, Common Midpoint (CMP)
method appeared to be a more accurate way to determine GPR subsurface velocity than hyperbola fitting. Zhao and
Al-Qadi (2016) applied CMP method when estimating the thickness of asphalt.

Machine learning algorithms can be used for meaningful interpretation of GPR data. Machine learning in GPR
data interpretation has many applications, some of which include detection of landmines (Smitha and Singh (2020);
Frigui and Gader (2008)), predicting geometry and material classification of buried objects (Syambas (2012); Lu et al.
(2014)), automatic detection and interpretation of GPR data (Shihab et al. (2002)), etc. However, with the increase
in amount of data, detection of target features takes a long time. Other approaches use machine learning methods to
concentrate on hyperbola detection as a first step, followed by a fitting algorithm. Ristić et al. (2017) used an artificial
neural network in extraction of hyperbolic features and segregation of segments from a radargram.

Neural networks are gradually becoming popular since they were first introduced in the 1980s. Machine learning
algorithms look at the data as a whole and draw decision boundaries around the samples. Since they treat all given
features in a similar way, any change in even an insignificant feature may cause degradation in themodel’s performance.
A deep learning model, on the other hand, contains multiple layers of neural networks which work on different aspects
of the input data. It even checks the significance of different features and tries to give lower weightage to insignificant
ones.

For automatic detection of characteristic signatures of buried objects, neural network (NN)-based methodologies
were developed by Al-Nuaimy et al. (2000) and Gamba and Lossani (2000). The application of multi-layer perceptron
(MLP) neural network was effective in automatic identification and location of embedded steel reinforcing bars in
concrete (Shaw et al. (2005)).

In recent years, extensive studies have been carried out on interpretation techniques based on deep-learning-based
models. This has brought to light the many advantages of deep learning techniques. With increase in GPR data,
the performance of traditional machine learning techniques suffer. This is where deep learning techniques have an
edge over the traditional machine learning techniques (Najafabadi et al. (2015)). Moreover, since GPR data contains
considerable environmental and experimental noise, deep learning techniques are generally better in data interpretation.
Over time, researchers have started usingCNN-based hyperbolic pattern recognitionmethods (Krizhevsky et al. (2012);
Besaw and Stimac (2015); Lameri et al. (2017)) for classification of objects.

With the advent of simulation tools like gprMAX (Warren et al. (2016)), researchers have started using artificially
generated GPR data for machine learning based classification of underground objects (Lu et al. (2014); Zhang et al.
(2016); Kafedziski et al. (2018); Giannakis et al. (2021)).

Recently, models based on deep CNNwere used in pattern recognition (Ding et al. (2016)) and classification (Chen
et al. (2016)) of radar targets. Compared to a conventional neural network, the architecture of the deep CNN consists
of 2 or more pairs of convolution and pooling layers. Deep CNN improves the accuracy of the target detection in
GPR data. Tong et al. (2018) employed multi-stage CNNs to automatically classifying subgrade defects from X-ray
computed tomography images, while Jiang et al. (2018) used a multi-stage CNN to identify asphalt mixtures fromGPR
data. Although, various techniques have reported improved performance of CNNs, they have not been extensively used
in interpretation of GPR data.

Wiwatrojanagul et al. (2017) proposed a new method to automatically locate rebars in reinforced concrete struc-
tures. They used a processing technique to locate the rebar and to estimate the wave propagation velocity using hyper-
bolic signature from GPR date. The proposed method could estimate both the cover thickness and locate the buried
objects with a high degree of accuracy. Later, Liu et al. (2020) worked on similar lines and proposed a method which
used deep learning to automatically detect and localise buried targets. Single Shot Multibox Detector (SSD) was used
to identify the regions of interest in GPR images which consisted hyperbolic signatures. This study concluded that the
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proposed approach could detect buried rebars in real time with a high degree of accuracy.
Most of the above methods concentrate on the detection and the localisation of buried objects, and the classification

of such objects based on their shapes and compositions. However, very few researchers have worked on prediction of
size of underground objects. Those that have dealt with prediction of size have used extrapolation (Syambas (2012))
and gaussian regression techniques (Pasolli et al. (2009)).

1.2. Aim of Present Work
In this paper, a feature-based algorithm for object size prediction in GPR data is proposed. It uses deep Convo-

lutional Neural Network (CNN) estimator to decrease error and increase speed of prediction of size of targets from
GPR images. Feature extraction is performed on the original pattern of GPR images prior to training the dataset in
the proposed CNN model. Many training images are required for successful training of the model and to improve
accuracy. To the best knowledge of the authors, no prior work has been done using hyperbolic feature extraction as a
pre-processing step followed by a CNN-based estimator to predict size of buried objects.

2. GPR Data
The electromagnetic simulator gprMax is used to generate simulated data for training the proposed model. Further,

acceleration of the simulations is achieved by using NVIDIA’s CUDA framework (Warren et al. (2019)).
To create a model for simulation, several parameters need to be set. Figure 1 shows one of the models created using

gprMax.

Figure 1: Simulated model

The dimensions of the model are 1000×400×600 (X ×Y ×Z) mm3. There is a 210 mm layer of air at the top and
a soil layer of 390 mm below it. In Figure 1, a cylindrical object, made of aluminium (� = 3.5 × 107 Siemens/metre,
�r = 10.8), is located 213 mm below the ground. The signal source along with the transmitter (Tx) and receiver (Rx)
antennas are placed above the soil layer.

1000 GPR B-Scans are created for 7 soil types with random values each for object depths and radii. The dielectric
parameters for the soil types are given in Table 1 (Von Hippel (1954)).

Depth values are taken randomly between 10 mm and 215 mm below the soil surface. As for radius of the target,
random integer values between 5 mm and 20 mm are selected. Care is taken to automatically adjust the depth of
the target for larger values of radius, so that the target is always below the soil surface. The parameters used in the
simulation are given in Table 2.

The value of time window depends mainly on soil properties (� & �r) and the depth of the buried object. Its value
should be large enough to allow receipt of the echo signal by the receiver. The maximum value of time window is
found to be 14 ns and this value is taken for all simulations.

The simulations are accelerated using NVIDIA RTX3090 GPU. For each model, 108 A-Scans are taken, sufficient
to capture the hyperbola created by the EM wave reflection from the target. Figure 2 shows a sample B-Scan image
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Table 1
Properties of Soil Types

Sl. No. Soil Type Conductivity
� (S/m)

Relative
permittivity �r

1 Dry and sandy 0.002 10

2
Marshy land, densely
wooded 0.0075 12

3 Agricultural land 0.01 15
4 Rocky land, steep hills 0.002 12.5

5
Hilly terrain
(to about 1000 m) 0.001 5

6 Pastoral Hills, rich soil 0.007 17

7
Pastoral medium hills
and forestation 0.005 13

Table 2
Simulation parameters

Parameters Parameter values

Source Frequency 400 MHz
Source Waveform Gaussian
Resolution (Spatial) 2 mm
A-Scan intervals 6 mm
No of A-Scans 108
Time Window 14 ns

Figure 2: A simulation result

which is composed of 108 A-Scans. An object of radius 18 mm (36 mm diameter) is buried 213 mm below the soil
surface. Each B-Scan file has 3636 × 108 data points. All 1000 B-Scan files are stored in a three dimensional (3D)
numpy array along with their corresponding attributes (object radius). A representation image of the array of stacked
B-Scan files is shown in Figure 3.

Figure 3: Image data is stacked in a 3D array
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3. GPR Principle
As can be seen in Figure 4, the GPR receives multiple reflections from a buried target as it moves across the

scanning direction.

Figure 4: Hyperbola formation due to reflections from buried target

The larger the size of the buried object, the greater will be the area from which reflections occur. When presenting
the effect of the diameter of buried object on hyperbolic reflections, Wiwatrojanagul et al. (2017) observed that the
amplitude of the peak hyperbolic reflection has a good correlation with the diameter of the buried objects. Later, in
the findings reported by Liu et al. (2020), it was seen that the shape of the hyperbolic curve changed slightly with
different rebar diameters, even though it is more sensitive to the rebar depth than the rebar diameter. The input image
of the proposed model contains 108 A-Scans taken at 6 mm intervals. This indirectly contains size related information
regarding the hyperbola. This should help in extracting different characteristic features from the hyperbolic image.

4. Convolution Neural Networks
Conventional computer vision methods have been applied for structural analysis (Torrione et al. (2013); Wahab

et al. (2013); Koch et al. (2015); Zakeri et al. (2017), detection of concrete cracks (Liu et al. (2013)), recognition and
visualization of cracks (Adhikari et al. (2014)), measurement of road surface distresses (Zhang and Elaksher (2012)),
geological parameterization (Liu and Durlofsky (2020)), etc. The techniques applied in the studies mentioned above
require large amount of image pre-processing when the training dataset is being prepared. The training process is
tedious as well. CNN models typically perform feature extraction through a series of convolutional layers, pooling
layers, and fully connected hidden layers. CNN has shown exceptional performance in various domains. Its use in
computer vision is well known with much work being done on face recognition with varying illuminations and facial
expressions among others. CNN architectures have also been implemented on portable devices like FPGAs for various
applications (Guo et al. (2017); Nguyen et al. (2019)). The pre-processing required in a CNN model is lower than that
of algorithms (Cheng and Wang (2018); Krizhevsky et al. (2012)). The architecture of a typical CNN binary classifier
with an input image size of 128×128 is shown in Figure 5.

CNNs used in practical purposes have multiple pairs of convolutional and pooling layers. The output of the final
pooling layer is connected to a hidden layer, the output of which is passed to a final classification/estimation layer.

5. Proposed CNN Architecture
A CNN extracts high-level features such as edges from the input image and reduces the dataset to a form which

is easier to process. The spatial size of the convolved feature is reduced by the pooling layer. This decreases the
computational requirements for processing the data. It is also useful for extracting dominant features.

Before feeding it to a neural network, the output from the final pooling layer is flattened into a column vector.
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Figure 5: Structure of a generic CNN architecture

5.1. Feature Extraction
The overall GPR data processing pipeline in this work consists of feature extraction, splitting of dataset into train-

test sets, normalising the data, training of CNN model, and validation.
As a means of feature extraction, edge detection is used. There are several operators for edge detection that are

used in image processing. In this work, Sobel, Laplacian, Scharr, and Canny operators are used for comparing the
performance of the proposed CNN architecture. Hyperbolic curves are one of the distinguishing features in GPR
images. The parameters of a hyperbolic signature can be used to estimate the size and location of the related target
object in addition to the characteristics of the medium (e.g.: soil). In edge detection we try to find the regions in an
image where there is a sharp change in intensity or colour. The higher the value, steeper the change and vice versa.

5.1.1. Sobel Operator
A very common operator for edge detection is a Sobel operator. Sobel is a very popular operator and is widely

used by researchers as an edge detection tool (Chen et al. (2020)). The Sobel operator is a gradient based method and it
calculates the first derivatives of the image separately for the X and Y axes. The derivative in X direction is computed
by convolving the image f (x, y) with a kernel Gx. For a kernel size of 3, Gx is computed as shown in equation 1. The
derivative in Y direction is computed as shown in equation 2.

Gx =
⎡

⎢

⎢

⎣

−1 0 +1
−2 0 +2
−1 0 +1

⎤

⎥

⎥

⎦

∗ f (x, y) (1)

Gy =
⎡

⎢

⎢

⎣

−1 −2 −1
0 0 0
+1 +2 +1

⎤

⎥

⎥

⎦

∗ f (x, y) (2)

From equations 1 and 2, the gradient of an image f (x, y) with respect to x and y directions can be shown as given
in equation 1. The gradient will be in whichever direction the change will be more intense. This gradient direction is
calculated as given by equation 2. Finally, at each pixel of the image, the approximation of the gradient is calculated
by equation 3.

∇f = [Gx, Gy] =
[

)f
)x
,
)f
)y

]

(3)
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(
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)x

)2
+
(

)f
)y

)2
(5)

In this work, 7×7 Sobel kernels are implemented. By increasing the size of the convolution matrix, the edge
detector becomes less sensitive to local noise. This is useful for low contrast images where edges might not be easy to
detect. Sobel operator has the advantage of providing edge detection with simultaneous reduction in noise (gaussian
smoothing).

5.1.2. Laplacian Operator
The second edge detection method used to compare the CNN performance is the Laplacian operator (Bergholm

(1987)). However, unlike the Sobel operator, the Laplacian uses only one kernel. Laplacian operator is computationally
faster than Sobel operator and it calculates second order derivatives in a single pass.

In this work, 5×5 Laplacian kernels are implemented due to the advantages mentioned previously.
5.1.3. Scharr Operator

The third method used for CNN performance comparison is the Scharr operator which calculates the second deriva-
tives in both X and Y axes.

In this work, 5×5 Scharr kernels are implemented due to the advantages mentioned previously.
5.1.4. Canny Operator

The fourth method used for CNN performance comparison is the Canny operator. It has been used as a pre-
processing step for automated detection of hyperbolic features (Bugarinović et al. (2020)). Di and Gao (2014) demon-
strated the use of Canny edge detection for 3D seismic discontinuity enhancement. It is a multi-stage edge detector
algorithm which goes through the following steps:

i. Noise reduction using a Gaussian filter.

ii. Calculate intensity gradient using Sobel filter, using equations 4 and 5.

iii. Remove unwanted pixels which may not be part of the edges (non-maximum suppression).

iv. Using high and low threshold intensity values, focus on the edges which are important for the present application
and filter out the unwanted pixels which non-maximum suppression could not.

In this work, a Canny operator having 20 as low threshold and 120 as high threshold is used. The threshold values
are determined using trial-and-error method for best validation loss during CNN training.

The fundamental concept in all the four feature extraction techniques is that the targets (buried object) produce
hyperbolic signatures in GPR B-Scans which can be summarised in terms of size and orientation of the hyperbolic
shapes.

5.2. Training of CNN model
The dataset containing 1000 B-Scans (108,000 A-Scans) is split so that 900 files are used for training and 100

for validation. Care is taken so that we get the same split for each edge detector used. The data is then normalised
separately for train and test sets and reshaped to add a 4tℎ dimension for colour channel (1 in this case since it is
greyscale).

5.2.1. Convolution Layer
A convolution layer applies a filter to an input image which results in an activation. The corresponding activation

function decides which nodes get activated. Repeated application of a filter results in a a feature map. Multiple filters
are used in parallel for each convolutional layer. This helps it to extract multiple features in parallel. The Rectified
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Figure 6: Output of filters used in object of different sizes
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Linear Unit (ReLU) activation function is used in both the convolutional and hidden layers. ReLU is a non-linear
activation function used in deep or multi-layer neural networks. It can be represented as:

f (x) = max(0, x) wℎere, x is an input value. (6)

The output of ReLU is equal to 0 when the input value is less than 0 and equal to the input value when the input is
positive. Thus, equation 6 can be re-written as:

f (x) =

{

0, if x < 0
x, if x ≥ 0

(7)

5.2.2. Pooling Layer
Of the two types of pooling available, Max Pooling downsamples the input image by computing themaximum value

from the portion covered by the kernel. On the other hand, Average Pooling computes the average from the portion
covered by the kernel. In most cases, Max Pooling has a better performance than Average Pooling. The convolutional
and pooling layers, together form an i-th layer of the CNN.

5.2.3. Fully Connected Layer
A fully connected layer is an important final stage of any convolution network. Here, the output of the network’s

last convolution layer are flattened to a single 1 dimensional vector. The input nodes of the fully connected layer have
a complete connection to all the activations from the previous flattened layer.

5.2.4. Loss Function
The mean absolute percentage error (MAPE) is used as a loss function for training the CNN model. It is the mean

of the absolute differences between our target and predicted values. It is defined as the mean of absolute relative errors:

MAPE = 1
N

N
∑

t=1

|

|

|

|

Pt − At
At

|

|

|

|

(8)

where N is the number of samples, (Pt) is the predicted data value and (At) is the actual data value.

5.2.5. Optimization
The use of an appropriate optimizer is essential in improving the model’s performance. Optimizers minimise losses

by adjusting the hyper-parameters of the network like weight and learning rate. Stochastic Gradient Descent (SGD)
was perhaps the most popular optimizer during the initial days of deep learning. Over the years, many improvements
on SGD like momentum and Nestorov (Botev et al. (2017)) have been reported. Adaptive optimizations like AdaDelta,
RMSProp, and Adam (Adaptive Moment Estimation) have become popular recently as they adjust the learning rates
of the parameters in different proportions, resulting in faster convergence and smoother training process. Adam has
become quite popular because it converges faster than the other adaptive optimizers. Hence, it is used in optimizing
the proposed CNN model’s training process with an initial learning rate of 0.0001.

5.2.6. Evaluation Metrics
MAPE is used as a metric to measure the performance of the CNN training and validation. It is a measure of

prediction accuracy in statistics. MAPE is commonly used for checking the performance of regression models. MAPE
can be expressed as a percentage, making it understandable to all types of audiences. By contrast, other metrics that
are not expressed in relative terms or as percentages usually require domain expertise and context to understand the
significance of their numerical values.

5.3. Final Architecture
After multiple training sessions, it is found that 4 filters of 5×5 kernel size in the first Convolutional layer gives the

best MAPE, irrespective of the number of hidden layers in the model. Hence, this is taken as the base for the model,
after which several hidden layers are added. Performance is evaluated for each addition of hidden layer. Table 3 shows
the validation losses corresponding to different numbers of hidden layers used, for various edge detectors.
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Table 3
Validation Losses for different numbers of hidden layers

Sl. No. Number of
Hidden Layers

Validation Loss (MAPE)

No Edge
Detector Sobel Laplacian Scharr Canny

1 1 Layer 28.99 33.1 30.41 8.70 18.51
2 2 Layers 29.59 30.40 31.91 9.55 19.96
3 3 Layers 30.84 34.46 34.27 7.72 20.16
4 4 Layers 30.32 35.68 32.99 7.65 21.31
5 5 Layers 16.39 31.23 29.29 6.94 23.97
6 6 Layers 16.34 30.56 29.25 8.71 25.58
7 7 Layers 16.14 30.24 - 8.35 -
8 8 Layers 16.55 - - 8.36 -
9 9 Layers 16.11 - - 8.50 -
10 10 Layers 20.49 - - 9.87 -

Table 4
Estimated diameters (mm) of buried targets
by the CNN model

Sl. No. True
value

Best
Prediction

Worst
Prediction Median

1 10 9.58 7.27 9.51
2 12 13.16 17.48 14.59
3 14 14.18 17.18 14.18
4 16 15.33 17.12 15.33
5 18 19.06 21.39 20.11
6 20 19.53 23.45 20.95
7 22 22.30 24.57 21.80
8 23 24.51 24.85 24.68
9 24 23.93 30.25 24.51
10 26 26.05 23.70 25.73
11 27 32.06 32.06 32.06
12 28 30.59 23.46 27.32
13 30 29.47 23.56 30.81
14 31 32.68 35.58 34.13
15 32 33.33 24.89 33.73
16 34 35.09 29.33 35.09
17 36 36.30 39.74 36.30
18 38 39.70 27.72 34.86
19 39 36.28 36.28 36.28
20 40 40.40 37.80 39.24

The architecture of the best CNNmodel is shown in Figure 7. The input convolution layer is followed by aMaxPool
layer of pool size 2× 2. 32 filters of kernel size 3× 3 is used in the 1st hidden layer followed again by a MaxPool layer
of pool size 2 × 2. Another similar pair of convolution-pooling layer is placed after that, with the number of filters
being 64 in this case. Three more convolution layers are used after that with filter numbers 64 (3 × 3), 64 (3 × 3), and
66 (2 × 2) respectively. At this point, the outputs are flattened to a 1D matrix and a fully connected hidden layer of
64 neurons is added. A 1-way ReLU regression layer is used after the hidden layer, to estimate the required parameter
from each input image. Mini batch gradient descent method of batch size 32 is used for training the CNN model. The
CNN model trains over a series of epochs and makes an estimation of the required parameter, i.e., diameter (2×radius)
of the buried object. MAPE (loss function) during validation is monitored and early stopping callback API of Keras
is used to stop the training if the model performance does not improve after 100 successive epochs.

NVIDIA RTX3090 GPU was used in CNN training. Using a GPU, the CNN training time reduced from several
hours on CPU to less than 1 hour. The whole GPR data processing pipeline, including the CNN and its optimisation
algorithms, is written in Python, along with its image processing extension OpenCV and its deep learning extensions,
Keras and TensorFlow.

Figure 7: Architecture of the proposed CNN
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6. Results and Discussion
It is observed that the model with Scharr edge detector followed by CNN model with 5 hidden layers performs

the best with a validation loss of 6.94 (MAPE). However, Sobel, Laplacian, and Canny edge detectors did not give
favourable results with the current dataset. Best MAPE (validation) for the CNN model with Sobel edge detector is
30.24 (7 hidden layers), Laplacian edge detector is 29.25 (6 hidden layers), and Canny edge detector is 18.51 (1 hidden
layer).

Since the CNN model with Scharr edge detector shows the best validation loss, its model is saved in HDF5 format
to evaluate its performance on other datasets. For a final performance evaluation of the model, another set of 100
B-Scans is created using gprMax. The MAPE of the model for this new and unseen dataset is found to be 7.49. Table
4 shows the performance of the model on the new dataset.

A violin plot showing the distribution of predicted values and their probability density is shown in Figure 8. It
divides the data points (predicted values) into four equal portions (quartiles). The white dot in the middle denotes
the median value and the thick black bar denotes the interquartile range. The thin black line extending on both sides
represents the upper and lower adjacent values in the predicted data. The kernel density estimation on both sides of
the black line shows the distribution of the data.

Figure 8: A violin plot showing the distribution of predicted values for various diameter values
In Figure 8, the plot for diameter 24 mm shows that the median value of the predicted values is 24.51 mm. For an

actual value of 24 mm, the highest predicted value of 30.25 mm and the lowest predicted value of 23.93 mm create the
boundaries of the interval space which contains all the data points. The interquartile range (IQR) shows the middle
50% of the four quartiles. In this case, the IQR ranges from 22.5 mm (first quartile) to 27.5 mm (third quartile) which
means the middle 50% of the predicted values lie between 22.5 mm to 27.5 mm. The kernel density estimation (KDE)
plot shows the probability distribution of the predicted values on both the sides of the vertical black line. The KDE
plot goes to a maxima at around 24.51 mm which signifies that the probability of finding a predicted value near to
24.51 mm is maximum. This is in rough agreement with the fact that the actual value is 24 mm.

A comparison of the model’s performance shows that Scharr edge detector (SED) followed by a 6 convolution
layer CNN model boosts the overall performance over the other methods used. The SED approach extracts sufficient
signature information related to the size of the object to raise the system’s performance and reduce its validationMAPE
to 6.74 and a MAPE of 7.49 on new, unseen data.
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Figure 9
A GPR B-Scan with noise and after a median filter is applied to it

Table 5
Performance of CNN model on noisy data

Sl. No. Noise
Level

Diameter of target object (mm) Error

True value Predicted value (mm)

1 01% 36 36.92 0.92
2 02% 14 14.30 0.30
3 03% 36 34.03 1.97
4 04% 18 17.75 0.25
5 04% 17 17.70 0.70
6 04% 26 24.58 1.42
7 05% 22 23.58 1.58
8 05% 38 34.43 3.57
9 05% 24 20.84 3.16
10 10% 18 17.35 0.65
11 10% 26 24.85 1.15
12 10% 16 17.02 1.02
13 10% 28 25.47 2.53
14 10% 36 32.60 3.40
15 15% 28 26.47 1.53
16 15% 30 27.66 2.34
17 15% 16 14.03 1.97
18 15% 14 12.23 1.77
19 15% 26 29.80 3.80
20 20% 22 20.82 1.18
21 20% 14 14.91 0.91
22 20% 36 39.37 3.37
23 20% 28 21.77 6.23
24 20% 14 10.40 3.60
25 25% 20 15.58 4.42
26 25% 14 10.80 3.20
27 25% 26 19.01 6.99

6.1. Testing on noisy data
GPR images are seldom noise-free and ideal hyperbolic reflections are not obtained in most cases. Hence, it

is imperative to test any feature extraction model on noisy data for proper evaluation of its performance in realistic
scenarios.

For this, a new dataset is generated by adding noise randomly. Random number of pixels are selected for each
GPR B-Scan and replaced with white and black pixels. The total number of pixels in each B-Scan being 3,92,688
(108 × 3636), the range of the randomly selected pixels is randomly varied from 0.3% (1400) to 25% (98000). Before
applying the proposed model for diameter prediction, the image is first passed through a median filter which is a widely
used non-linear filter to remove noise in GPR images. A Scharr filter is then applied on the image, after which the
CNN model is used for diameter prediction. Figure 9 shows a GPR B-Scan with 10% noise added to it. Below it is the
noise-free image after a median filter is used.

Several images containing various amounts of noise are evaluated using the proposed CNN model. Table 5 shows
the performance of the model for different noise levels in the input image. As seen from the table, the model is able
to predict the target’s diameter with low error rates at low noise levels. However, as the noise level increases beyond
20%, it is seen that model’s performance degrades with error rates of 22.26% at 20% noise level and upto 26.88% at
25% noise level.
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Figure 10
A GPR B-Scan with targets made of PVC and concrete

Table 6
Performance of CNN model for non-metallic objects

Sl. No. Object
Material

Diameter of target object (mm) Error
(mm)True values Predicted values

1 PVC 34 32.90 1.10
2 Concrete 18 19.28 1.28
3 Concrete 32 30.12 1.88
4 PVC 16 14.91 1.09
5 Concrete 26 28.39 2.39
6 PVC 20 21.83 1.83
7 PVC 30 31.36 1.36
8 PVC 10 9.79 0.21
9 Concrete 18 19.38 1.38
10 PVC 22 20.12 1.88
11 Concrete 34 32.11 1.89
12 Concrete 26 23.72 2.28
13 Concrete 20 18.44 1.56
14 Concrete 24 24.29 0.29
15 PVC 16 16.54 0.54
16 PVC 16 14.76 1.24
17 Concrete 38 34.59 3.41
18 Concrete 28 25.87 2.13
19 Concrete 28 25.41 2.59
20 Concrete 30 27.29 2.71

6.2. Testing on non-metallic buried objects
ACNNmodel for detecting and predicting the size of buried objects will not be considered for practical application

if it can be applied to metallic targets only. Hence, its performance evaluation is needed for non-metallic targets as well.
For this purpose, a dataset consisting of PVC (� = 0.001 Siemens/metre, �r = 4) and concrete (� = 0.01 Siemens/metre,
�r = 7.3) is generated. Figure 10 shows a GPR B-Scans after a application of Scharr filter for PVC and concrete targets.

On evaluation of the CNN model of this dataset, it is seen that it can predict the target’s size with very low error
rates, irrespective of the target material. The dataset is generated using the methodology as previously described in
section 2. Table 6 lists the values predicted by the model for different target materials having different sizes.

6.3. Testing on multiple buried objects

Figure 11: A GPR B-Scan showing 3 buried objects

To test the efficacy of the model when multiple buried objects are present, few B-Scans are generated containing
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upto 3 objects of different sizes and at different depths. All the objects are considered to be cylindrical in shape. One
such B-Scan image is shown in Figure 11 where multiple hyperbolas with overlapping edges can be seen. It contains
3 metallic cylinders at depths of diameters 30 mm, 20 mm, and 40 mm from left-to-right.

In the case of multiple target objects, the hyperbolas will have to be isolated from the image before the model can
be used for estimation of target size. The hyperbolas can be isolated using template matching, which is a commonly
used algorithm in image processing. They can also be extracted manually by cropping the image. Next, each image
containing the individual hyperbola is reshaped to have the same size as required by the CNN model, in this case 108
× 3636. This is done by padding around the edges of each image with linearly varying values from the pixels at the
edge of the image to the 3636th / 108th pixel.

As shown in Figure 12, a Scharr filter is finally applied to each image after which the CNNmodel is used to estimate
the size of the targets. The model shows decent performance in estimating the size of the targets. It predicted a size
of 34.46 mm for the object with 34 mm actual diameter, 22.86 mm for 20 mm (actual), and 44.15 mm for an actual
diameter of 40 mm. However, those performances in which each image recorded a single hyperbola were better than
this result.

Figure 12: The extracted hyperbolas before and after application of Scharr filter

7. Conclusion
A novel approach of using CNN for predicting size of buried objects from GPR B-Scans was presented. The

proposed CNN architecture extracts high level signatures in the first stage of feature extraction and learns additional
low level features when the input data passes through the neural network to finally make an estimation of the required
parameter. A comparison with other techniques is shown in Table 7 fromwhich it can be concluded that the application
of CNN in this problem has demonstrated a good performance in predicting size of buried objects. Moreover, it can be
used in real time applications in GPR data interpretation since such a model can be implemented on embedded devices
like ARM, FPGA, etc.

Future work of this approach will concentrate on experimentally verifying the model with actual data taken from
an FPGA-based GPR system being developed in-house as well as from commercial GPR systems. The present model
was trained with an object which is a metallic cylinder made of aluminium. Even though the model was tested on PVC
and concrete objects with good results, its performance can still be improved by training it using greater number of
datasets containing objects of a variety of materials. Different types of materials will have different dielectric properties
and hence will generate different scattering and dispersion characteristics. Similarly, training the model for different
shapes such as rectangular and triangular forms give make it more robust. It remains to be seen how these will affect
the robustness of the proposed approach.

Acknowledgements
The authors would also like to thank Dr. Manoj Kumar Phukan (Sr. Scientist, Geo Sciences and Technology Divi-

sion, CSIR-NEIST, Jorhat) who gave detailed insights on interpretation of GPR data and Ms. Sharmistha Mazumdar
for her help in visualising the results. Finally, the authors appreciate the help of Mr. Arnob Doloi for his inputs during

: Page 14 of 17



Table 7
Comparison of present work with past studies

Sl.
No. Author Technique used Application Real time /

Offline

1 Chaudhuri and Samanta (1991) Hyperbolic feature extraction using Moment
of inertia optimisation

Extraction of hyperbolic
features

Offline

2 Delbo et al. (2000) Hyperbolic feature extraction using Fuzzy
shell clustering

Extraction of hyperbolic
features

Offline

3 Ko et al. (2012) PCA and Fourier Transform Detection of landmines Offline
4 Wahab et al. (2013) Hyperbola fitting technique Estimation of radius of

pipes and cables
Offline

5 Maas and Schmalzl (2013) Canny operator for edge detection and
Hough transform for hyperbola fitting

Automatically localize re-
flection hyperbola

Real time

6 Besaw and Stimac (2015) ANN based Deep Belief Network (DBN) Detection of explosive
hazards

Offline (in situ)

7 Mertens et al. (2015) Hyperbolic feature extraction using Canny
operator

Automated detection of
reflection hyperbola

Offline

8 Dou et al. (2016) Canny operator for edge detection and
Hough transform for hyperbola fitting

Automatically localize re-
flection hyperbola

Real time

9 Li et al. (2016) Hyperbolic feature extraction using Sobel op-
erator followed by Hough Transform

Automatic recognition of
tree roots

Offline

10 Lameri et al. (2017) Deep Convolutional Neural Network Detection of landmines Real Time
11 Todkar et al. (2017) Machine learning using Support Vector Ma-

chines (SVM)
Detection of debondings Offline (in situ)

12 Kafedziski et al. (2018) Faster Region Convolutional Neural Network
(Faster R-CNN)

Detection and classifica-
tion of landmines

Real Time

13 Sonoda and Kimoto (2018) Deep CNN Object identification Real Time
14 Kang et al. (2020) Basis pursuit-based background filtering al-

gorithm followed by deep CNN
Underground cavity de-
tection

Real Time

15 Bugarinović et al. (2020) Hyperbolic feature extraction using Canny
operator

Automated detection of
hyperbolic features

Offline

16 Giannakis et al. (2021) Autoencoder as a pre processing step fol-
lowed by ANN based regressor

Estimate the diameter of
reinforcement bars in con-
crete

Real Time

17 Present work Hyperbolic feature detection followed by
deep CNN

Estimation of radius/ di-
ameter of buried objects

Real time
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