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Abstract—Ground penetrating radar (GPR) is a preferred
non-destructive method to study and identify buried objects in
the field of geology, civil engineering, archaeology, military, etc.
Landmines are now largely composed of plastic and other non-
metallic materials, while archaeologists must deal with buried
artefacts such as ceramics, pillars, and walls built of a range of
materials. As a result, understanding the material properties of
buried artefacts is critical. This study presents an ANN model
for automatic classification of buried objects from GPR A-Scan
data. The proposed ANN model is trained and validated using a
synthetic dataset generated using gprMax. The model performs
well in classifying three different object classes of aluminium,
iron and limestone, while achieving an overall accuracy of 95%.

Index Terms—deep learning, artificial neural network, classi-
fication, object material, ground penetrating radar

I. INTRODUCTION

Understanding and studying the subsurface of the earth is
crucial in geology, civil engineering, archaeology, military,
and other fields. There is a growing need for non-invasive
techniques to explore and retrieve information about the under-
ground, whether to determine soil properties or to locate and
characterise unknown objects. Ground penetrating radar (GPR)
is a popular method for subsurface mapping and the detection
of underground objects like electrical lines [1], land mines [2],
pipes [3], road inspection [4], etc. Nowadays, landmines are
mostly made out of plastic and other non-metallic materials.
Moreover, archaeologists have to deal with buried artefacts
like pottery, pillars, walls etc. which are made of a variety of
materials like limestone, iron, wood etc. Hence, knowledge of
the material properties of buried objects is of vital importance
to investigators across all fields.

GPR has been frequently used to locate underground struc-
tures in a non-destructive manner. Other non-destructive tools
are also used to map the subsurface. Al-Qubaa et al. [5]
constructed a Giant Magneto-Resistive (GMR) sensor array
to capture scattered EM signal reflected by different metallic
objects. They extracted features like shape, properties and
transient response analysis to identify handguns. Saripan et
al. proposed a method to identify the types of materials buried
in sand by collecting the scattered components of a gamma-
ray radiation [6]. Several feature points were then taken
from the frequency domain of the acquired signals for ANN
classification of material types. Setyabudi et al. proposed an

ANN model to classify metallic and non metallic object based
on the seismic vibrations propagating in the ground measured
by an accelerometer [7]. The above-mentioned techniques
suffered from limitations like slow data collection, limited
depth, low resolution etc.

Ni et al. enriched raw GPR data using the Discrete Wavelet
Transform (DWT) [3]. This resulted in better profile images
and they were able to classify between pipes made of plastics
and metals. A new feature extraction method was proposed
by Lu et al. using DWT and Fractional Fourier Transform
(FRFT) [8]. The extracted features were fed to Support Vector
Machine (SVM) classifier to automatically detect subsurface
items and materials from GPR A-Scans. Park et al. used a
phase analysis technique on GPR data to isolate subsurface
cavities and potential sinkholes from other underground ob-
jects. Background filtration of 3D GPR data was performed
to highlight the electromagnetic waves reflected only from
underground objects to make underground objects more visible
[9].

Machine learning based interpretation of GPR data is gain-
ing popularity nowadays. Machine learning and deep learning
based techniques have been applied to GPR data for various
kind of tasks like object detection [10] and size estimation
[11], detection of landmines [12], hyperbolic pattern recogni-
tion [13], soil moisture estimation [14], soil type classification
[15], etc. Núñez et al. proposed an automated detection system
for subsurface explosive artefacts using machine learning
algorithms [16]. Safatly et al. used Convolutional Neural
Network (CNN) to classify buried objects including mines or
other items based on the metal detector signature [17]. The
accuracy of their proposed model was almost 90%. Pasolli et
al. utilised SVM to classify buried objects such as air, metal,
and limestone from GPR images and achieved an accuracy
of 84% [18]. Numerous research have shown that applying
deep learning algorithms significantly improves performance
for classification issues of GPR data. Using a two-dimensional
(2D) grid image made up of a number of GPR B-scan and
C-scan images, Kim et al. employed deep CNN to classify
between subsoils, pipes, cavities, and manholes [19]. Ali et
al. extracted important signatures from hyperbolic features in
GPR B-Scans using statistical techniques [20]. They were able
to design neural network based binary classifier to classify
between metals and non-metals. CNN based classifier was



used by Elsaadouny et al. to discriminate real landmines from
other mine-shaped objects in GPR images [21].

Fig. 1. Simulated model

Although numerous techniques have been employed to
identify various kinds of buried objects, there is ample scope
of research to classify different kinds of buried materials using
GPR data. This paper mainly focuses on

1) The creation of a synthetic GPR database containing
buried objects of different materials.

2) The development of an ANN model to classify objects
based on their materials using GPR data.

II. GPR DATA

GprMax [22], a open-source GPR simulator, is used to
create the dataset for this study. The dimensions of the model
are 990 mm×400 mm×600 mm (X×Y ×Z). The top 200
mm of the simulated model is a layer of air, while the bottom
400 mm is a layer of soil, as shown in the Figure 1.

Cylindrical objects of three different materials are placed
between 150 mm and 360 mm underneath the soil’s surface.
The objects are made of aluminium, iron, and limestone having
relative permittivity and conductivity given in Table I.

The simulation parameters for the model are given in Table
II. Simulations are accelerated using NVIDIA GPU RTX 3090
[23]. The A-Scans of buried objects of different materials is
shown in Figure 2. The relative permittivity (εr) of the soil
used for the simulation is 10 and the conductivity (σ) is 0.002
S/m. A time window of 14 ns is used in this study.

TABLE I
RELATIVE PERMITTIVITY AND CONDUCTIVITY OF THE BURIED

CYLINDRICAL MATERIALS

Object Type
Relative

Permittivity
εr

Conductivity
σ (S/m)

Aluminium 10.8 3.5×107

Iron 1.45 9.98×106

Limestone 5.8 9×10−3

TABLE II
GPRMAX SIMULATION PARAMETERS

Sl. No. Simulation Parameters Values

1 Excitation waveform Gaussian
2 Antenna frequency 400 MHz
3 Time window 14 ns
4 Spatial resolution 2 mm
5 Maximum radius of the cylindrical object 30 mm
6 Minimum radius of the cylindrical object 10 mm

A. Data Preprocessing

A total of 9300 A-Scans are generated. The dataset is
built by concatenating all the A-Scans forming an array of
dimensions 9300×3631, together with their corresponding
labels (aluminium, iron, limestone).

III. METHODOLOGY

ANN is used to classify the buried objects based on their
material types. 7400 A-Scan samples (80%) out of the 9300
A-Scans are utilised for training, while 1860 samples (20%)
are used to validate the model’s performance. The output of
each neuron is defined by an activation function, and the error
is monitored by a loss function. The goal is to reduce the loss.
The data is normalised before training.

A. The Proposed Model

Several training runs show that the ANN model containing
six hidden layers is the most accurate and reliable. Its archi-
tecture is shown in Figure 3.

Fig. 2. A-Scans of three objects of different material buried underneath the soil



Fig. 3. Proposed architecture for ANN

Initially, 3631 neurons were used in the neural network’s
input layer followed by a series of hidden layers, each con-
taining half as many neurons as the layer before it. There are
1815, 907, 453, 226, 113, and 56 neurons in each of these
six hidden layers, respectively. ReLU (Rectified Linear Unit)
activation function is used in all the layers. ReLU is a non-
linear function which sets all negative input values to 0. All
other values are kept constant. Mathematically, it is expressed
as given in equation 1.

f(n) = max(0, n) (1)
where n is neuron input.

For the classification of the buried objects, three neurons are
employed in the output layer with softmax activation function.
Categorical cross-entropy is utilised as the loss function in the
model.

Adadelta algorithm is used for optimising the model, which
is a more robust extension of Adagrad that adapts learning
rates based on a moving window of gradient updates, instead
of accumulating all past gradients. This way, Adadelta contin-
ues learning even when many updates have been done. The
learning rate of Adadelta is taken to be the default one which is
0.001 as it benefits from higher initial learning rate compared
to other optimizers [24].

Dropout layers are employed in the proposed model to
prevent overfitting of the model by randomly setting input
neurons to zero with a frequency of rate at each step during

training time. The second and third layers of the proposed
model employ a dropout rate of 50%, the fourth and fifth
layer a dropout rate of 40%, the sixth layer a dropout rate of
30%, and the seventh layer a dropout rate of 20%.

IV. RESULTS

An overall accuracy of 95% is obtained after numerous
training and validation runs. Different metrics, including pre-
cision, recall, and F1-score are calculated for each of the three
material classes in order to evaluate the model’s performance
as shown in Table III. The model’s confusion matrix is
depicted in Figure 4 with the actual class labels on the y-axis
and the predicted class labels on the x-axis.

TABLE III
CLASSIFICATION REPORT OF THE ANN MODEL

Object
type Precision Recall F1-score Accuracy

Aluminium 0.92 0.93 0.93
Iron 0.93 0.90 0.91 95%

Limestone 1.00 1.00 1.00

Precision (P) refers to a classifier’s ability to measure
how many of the positive predictions made are correct. The
accuracy of categorising an aluminium object in Figure 4 can
be computed using the formula in equation 2. Only 624 of the
682 aluminium materials are categorised as such.



TABLE IV
COMPARISON WITH PAST STUDIES

Sl. No. Authors Technique used Classes Accuracy

1 Setyabudi et al. [7]
(2019) ANN applied on Seismic vibrations 2

metallic and non metal 77%

2 Lu et al. [8]
(2014)

DWT-FRFT feature-based SVM on
GPR data

3
PEC, stone, PVC 92%

3 Saripan et al. [6]
(2013)

ANN applied on scattered components
of a gamma-ray radiation

3
wood, stone, stainless steel 48%- 95%

4 Pasolli et al. [18]
(2009) SVM applied on GPR images 3

air, metal (PEC), limestone 84%

5 Present work ANN applied on GPR data 3
aluminium, iron, limestone 95%

Fig. 4. Confusion matrix of the ANN Model

Precision =
624

682
= 0.92 (2)

The classifier’s capacity to tell what proportion of all
positive cases the model accurately predicts is measured by
Recall (R). For each class in Figure 4, it is the ratio of True
Positive and the sum of True Positive and False Negative. Out
of the total 666 predictions for aluminium object, 624 were
accurate, while 42 were false negatives. Recall for aluminium
object can therefore be estimated as per equation 3.

Recall =
624

666
= 0.93 (3)

F1-score is a metric used to assess how well a model
performs in terms of classification and can be interpreted as
a weighted average of the precision and recall. It ranges from
0 to 1, with 1 being a perfect score, meaning that the model
accurately predicted each observation. The F1-score can be
determined using the classifier’s precision and recall for the
aluminium object as indicated in equation 4.

F1− Score = 2× P ×R

P +R
= 0.93 (4)

V. CONCLUSION

An ANN model for automatic classification of buried object
based on their material types was presented in this study.
From the classification report in Table III and confusion matrix
in Figure 4, it is seen that the proposed model is able to
classify different materials with a high degree of accuracy. The
model is able to classify metallic (aluminium / iron) and non-
metallic objects (limestone) with 100% accuracy. The accuracy
decreases when trying to classify between objects made of
aluminium and iron. Table IV provides a comparison with
previously published literature work. The previously reported
studies dealt with binary classification, used less data for
testing and validation, or suffered from slow data collection.
In other cases, their reported classification accuracy was less
than the present work. The present work, which uses GPR,
will speed up the collection of data and allow for real-time
results for material classification. This can be very useful in
fields like landmine detection, archaeology, civil engineering
etc. where knowledge of materials is crucial for taking on-field
decisions.

Limitations

The proposed model is trained and tested on synthetic data
and is yet to be tested with real data. Objects of only three
different materials were considered while generating the GPR
data. Moreover, all the objects in this study were of cylindrical
shapes. The authors plan to add more shapes based on different
materials to validate the model with experimental data.
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