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Abstract—Identifying and classifying buried artefacts remains
a major scientific and technological problem. Shape recognition
will aid investigators in classifying buried items and narrowing
down areas of interest. An artificial neural network (ANN) model
for automated object shape classification using GPR data is
developed in this paper. A synthetic dataset is developed using
finite difference time domain (FDTD) simulation and utilised to
train and evaluate the proposed ANN model. The model performs
well in identifying three shapes of cylindrical, rectangular, and
triangular objects.

Index Terms—deep learning, artificial neural network, classi-
fication, object shape, ground penetrating radar

I. INTRODUCTION

The study and interpretation of subsurface objects is critical
in archaeology, the military, civil engineering, geology, and
other areas. Ground penetrating radar (GPR) is a popular
choice for subsurface investigation and the detection of buried
objects such as utility lines, land mines etc [1]. GPR has been
widely utilised to identify subterranean structures in a non-
destructive manner.

GPR has been used to uncover many ancient monuments
and sculptures in different parts of the world including those
of the roman, greek, indian, egyptian and chinese civilisations
[2], [3], [3], [4].

The identification and classification of landmines, impro-
vised explosive devices, tunnels, and similar objects continues
to be a significant scientific and technical challenge. GPR, in
conjunction with other current technologies, complements the
identification of such objects since it can detect any dielectric
anomalies in the soil [5].

The identification of shapes will help investigators to clas-
sify buried objects as well as narrow down regions of interests
in case of archaeological excavations. It will also reduce
cases of false positives when looking for landmines and other
explosive devices.

Due to the difficulty in analysing GPR signals, there are
two primary obstacles in revealing subterranean objects using
GPR. The first is that, interpretation of GPR B-scan data still
depends significantly on human efforts and trained specialists.
Second, traditional GPR data processing approaches aimed at

GPR data interpretation are either conceptually complex or
computationally expensive. It is imperative to develop ways
for interpreting raw GPR data that are straightforward and
easy to use.

Gader et al. employed a hidden markov model (HMM)
to analyse hyperbolas in GPR B scans to locate landmines.
[6]. Pasolli et al. presented an object detection approach in
GPR data that used a novel unsupervised technique based on
genetic algorithms (GA). It enabled the localisation of linear
and hyperbolic patterns [7].

Of late, machine learning algorithms have proven to be a
reliable option for GPR data interpretation. A machine learning
based automated detection of subsurface explosives artefacts
was proposed by Núñez et al. [8]. Others have demonstrated
the application of machine learning algorithms for estimating
the size of buried objects [9], [10].

Recently, the use of ANN has gained momentum due to
greater availability of high performance computing platforms.
Several studies have demonstrated that classification problems
of GPR data show significant improvement in performance
after using deep learning algorithms. Zhu et al. explored the
difficulties of utilising deep learning techniques for remote
sensing data analysis and concluded that deep learning models
tend to have superior performance over classical approaches in
classification and detection related problems [11]. On analysed
GPR data, Kim et al.found that the proportion of misclassifi-
cation dropped when deep learning techniques were used [12].

Lei et al. used Faster Region-based CNN (Faster RCNN)
for GPR B-scan hyperbola detection. Compared to traditional
methods, their scheme demonstrated improved accuracy and
robustness n terms of real-time detection and localisation of
targets. Nuaimy et al. used ANN and pattern recognition tech-
niques to generate high resolution images of the subsurface
with improved computation times which proved to be useful
for on-site GPR mapping [13]. A neural network model was
proposed by Senanayake et al. to estimate soil moisture in
catchment areas based on remote sensing and GPR data. [14]
while others have proposed models for classifying soil types
[15] and estimating soil moisture [16]. SVM models were also



Fig. 1. Simulated model

proposed by other researchers to classify soil types [16], [17].
Although various algorithms have been developed for de-

tecting and classification of subsurface objects, further re-
search is needed to explore the feasibility of detecting and
classifying shapes of buried objects using GPR. This paper
mainly focuses on

1) The creation of a synthetic GPR database for target
shape classification.

2) The development of an ANN model capable of accu-
rately classifying target shapes using GPR data.

II. GPR DATA

The dataset for this study is generated using gprMax, a
FDTD based simulator. The dimensions of the simulated
model is 1000 mm × 400 mm × 600 mm (X × Y × Z).
As shown in Figure 1, the top 200 mm of the model is a layer
of air below which lies a 400 mm layer of soil.

Objects of cylindrical, triangular and rectangular shapes are
assumed to be buried in the soil at depths ranging from 41
mm to 265 mm from the surface. All the objects are made
up of aluminium, having relative permittivity εr=10.8 and
conductivity σ = 3.5 × 107 S/m. The simulation parameters
are given in Table I.

TABLE I
PARAMETERS USED FOR FDTD SIMULATION

Sl. No. Simulation Parameters Values

1 Excitation waveform type Gaussian
2 Antenna frequency 400 MHz
3 Time window 14 ns
4 Spatial resolution 2 mm
5 Maximum radius of cylindrical object 58 mm
6 Minimum radius of cylindrical object 7 mm
7 Maximum width of rectangular object 29 mm
8 Minimum width of rectangular object 6 mm
9 Maximum length of each side of triangular

object
58 mm

10 Minimum length of each side of triangular
object

7 mm

NVIDIA GPUs Tesla T4, K80 and RTX3090 are used to
accelerate the simulations. Time taken for each simulation
usually ranges from few seconds (RTX3090) to few minutes
(K80).

Figure 2 shows the geometry and corresponding A-Scans
of the models of similar object sizes at a depth of 200 mm
underneath the soil surface having soil relative permittivity
(εr) of 10 and conductivity (σ) of 0.002 S/m. The value of
time window is dependent on the relative permittivity of the
soil. For the soil used in this study, the suitable value for time
window is found to be 14 ns.

Fig. 2. Three different shapes buried inside the soil and their corresponding A-Scans



A. Data Preprocessing

A total of 11500 A-Scans are generated for this study, each
having 3631 values of amplitude across the depth of the model.
For preparing the dataset for training, all the A-Scans are
concatenated to form an array of dimensions 11500×3631,
along with their respective labels (shape of the object).

III. METHODOLOGY

In this work, ANN is used for classification of object shapes.
9200 samples (80%) are used for training and 2300 (20%)
samples are used for validation and testing of the model.
During the training phase, a neural network learns to classify
accurately by minimising the errors. An activation function is
used to define the output of each neuron and a loss function
is used to monitor the error. The goal is to get the loss as near
to zero as possible.

A. The Proposed Model

Multiple training runs show that the ANN model with 5
hidden layers has the best accuracy, and the architecture is

shown in Figure 3.
The proposed model consists of 6 layers including the input

layer. ReLU (Rectified Linear Unit) activation function in all
the layers. The function gives 0 as output, when the input to
the neuron is negative and equal to the input otherwise, as
shown in 1.

f(n) = max(0, n) (1)
,where n is neuron input.

The initial number of units in the input layer is taken to
be 3631, and made half for each subsequent hidden layers
i.e. 3631, 1815, 907, 453, 226 and 113. The output layer
containing 3 units uses softmax as the activation function to
classify the three object shapes.

For optimising the model, adaptive gradient (AdaGrad)
algorithm is implemented to minimise the loss function by
changing the learning rate in each layer. The loss function
used in the model is categorical cross-entropy.

While training the model, the validation accuracy of the
model is monitored at the end of each epoch and the training

Fig. 3. Proposed ANN architecture



is terminated when no improvement is observed over a specific
number epochs (patience). Figure 4 shows the training and
validation accuracy of the model. The accuracy increases over
830 epochs, after which the training stops due to no further
improvement in 100 successive epochs.

Fig. 4. Accuracy curve during training and validation of the model

To prevent overfitting of the model, dropout layers are used
in neural networks. This layer randomly sets a fraction of
the input neurons to zero at each step during training. In the
proposed model, dropout of 20% is used in the first 3 layers.
This helps in increasing the validation accuracy of the model to
92%. Without dropout, the accuracy does not increase beyond
89% during validation. The entire GPR program is written
using Python and its deep learning frameworks Keras and
TensorFlow.

IV. RESULTS

After multiple training and validation of the ANN model,
it is seen that overall accuracy is 92%. To evaluate the model,
different metrics such as precision, F1-score and recall are
calculated corresponding to the 3 different shapes as shown
in Table II. The confusion matrix of the model is shown in
Figure 5 in which y-axis represents true class labels and x-axis
represents the predicted class labels.

TABLE II
CLASSIFICATION REPORT OF THE CLASSIFIER

Object
Shape Precision F1-score Recall Accuracy

Cylindrical 0.87 0.89 0.88
Rectangular 0.98 0.93 0.95 92%
Triangular 0.91 0.92 0.92

Precision (P) is the ability of a classifier to avoid labelling
a negative occurrence as positive. In Figure 5, the precision in
classifying a triangular object can be calculated as shown in
eq 2. Out of 823 triangular shapes, 750 are correctly classified
as triangular shape.

Precision =
750

823
= 0.91 (2)

Fig. 5. Confusion matrix of the classifier

Recall (R) indicates the ability of the classifier to find all
the positive instances [18]. It is calculated as the ratio of true
positives to the sum of true positives and false negatives for
each class as shown in eq 3.

Recall =
750

812
= 0.92 (3)

F1-score is used to compare classifier models. It gives the
weighted harmonic mean of precision and recall, with 1 being
the best and 0 being the worst score. Considering the precision
and recall for triangular shape, the F1-score can be calculated
as shown in eq 4.

F1 = 2× P ×R

P +R
= 0.92 (4)

V. CONCLUSION

A novel approach for classifying object shapes based on the
A-Scan data was presented in this paper. An ANN model is
proposed which is used to classify object shapes from GPR
A-Scan data. The overall performance of the model can be
examined by analysing the classification report in Table II and
confusion matrix in Figure 5.

The proposed model shows good performance in classi-
fying three different object shapes from GPR A-Scans. In
archaeological excavations, the identification of shapes will
aid investigators in classifying buried artefacts and narrowing
down areas of interest. When checking for landmines and other
explosive devices, it will also minimise misclassifications.
Moreover, application of GPR provides a non destructive
approach in carrying out such surveys.

However, the dataset used to train and evaluate the proposed
model has limited variation in object shapes. The authors plan
to add more shapes and validate the model with experimental
data.
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