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Abstract—Soil moisture estimation is essential for understand-
ing the water cycle and its impact on weather and climate.
GPR based soil moisture estimation is non-invasive in nature
and provides quicker results as compared to standard laboratory
approaches. Deep learning algorithms have been shown to be an
effective method for extracting characteristics from GPR data.
To assess soil moisture, this paper offers a deep artificial neural
network (ANN) model. The data set was created using finite-
difference-time-domain (FDTD) simulation and is used to train
and validate the ANN model. The suggested model predicts soil
moisture from GPR A-Scans well, with R2 = 0.998 and mean
average percentage error (MAPE) of 1.23.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Soil moisture is considered to be a key variable in envi-
ronmental studies such as meteorology, hydrology, agriculture
and climate change. The estimation of soil moisture provides
better understanding of the soil dynamics for making proactive
decisions in the field of agriculture.

Soil moisture measurement is generally classified into direct
and indirect techniques. Direct methods usually involve dig-
ging of holes to collect soil samples and then separating water
from the collected samples. The separation of water from soil
can be achieved by heating the soil samples or by chemical
reactions [1]. These methods gives highly accurate results for
a particular depth but they are expensive, time consuming and
destructive [2].

Indirect methods mainly involve measurement of physical
or chemical properties of soil that are dependent on the
amount of soil moisture [1]. Previous studies shows that
the electromagnetic (EM) properties of soil is correlated to
its moisture content [3]. Time domain reflectrometry (TDR),
ground penetrating radar (GPR) and some other techniques
use EM properties for measurement of soil moisture.

Calamita et al. studied the variation in soil moisture with
soil resistivity in the Vallaccia catchment (central Italy) using
portable TDR, along with frequency domain reflectrometer
sensors. The results were compared by applying various resis-
tive methods and showed high correlation between resistivity
and soil moisture [4]. However, TDR probes limits the depth
of investigation to a few meters [5].

Brocca et al. explored the reliability soil moisture estimation
from satellite data. Correlation values of relative soil moisture
increase upto 0.81 upon application of different filters but
decrease with increase in vegetation [6].

Salam et al. developed a real time, in-situ method based on
wireless underground communications (WUC) for estimation
of soil permittivity and moisture. To obtain highly accurate
results, studies were carried out in the frequency range of
100–500 MHz with the antenna buried at 10 cm-40 cm depths
in various soils [7].

Compared to TDR, GPR technique has the advantage of
giving data from greater spatial regions. GPR has been widely
used in sedimentary research [8] and for estimating water
content of soil [9]–[11].

GPR is widely used for object size detection [12], [13].
However, the size of a target observable with a GPR is depen-
dent on the antenna’s centre frequency [14]. The frequency
useful for different applications depends on the soil properties
such as soil moisture [2] and soil type [15]. Thus, prior
knowledge about the soil moisture content of the soil helps
in determining the appropriate frequency to be used for a
particular application.

Hubbard et al. examined the potential of estimating soil
moisture over large areas with varying hydrological conditions
using GPR reflections [16]. Benedetto et al. proposed an
approach to estimate soil moisture for pavement inspection
using GPR. The results were validated using capacitance
probes [17].

However, the interpretation of GPR data is still a manual
process. It is done by people who have extensive experience in
GPR data interpretation. Of late, machine learning algorithms
have been implemented for processing and interpretation of
GPR data. Rahman et al. predicted 11 soil series using
machine learning techniques in order to find appropriate crops
for cultivation [18]. Senanayake et al. developed an neural
network model to estimate catchment scale soil moisture fom
remote sensing and GPR data [19]. A long short-term memory
(LSTM) predictive framework integrated with Boruta-random
forest (BRF) optimiser was proposed by Ahmed et al. to
estimate soil moisture under global warming scenarios [20].
An SVM model was proposed by Malajner et al. to classify
soil types [21]. After determining the soil type, another model
for estimating soil moisture was employed. Ultra-wideband
radio frequency modules and antennas were used to capture
the data. Recently, various regression and machine learning
models were proposed by Teneja et al. to predict soil organic
matter and soil moisture content using images taken from cell
phones [22].

Although various remote sensing techniques are utilised to



estimate soil moisture, further research is needed to investigate
the feasibility of assessing soil moisture content using GPR.
This paper mainly focuses on

1) Creation of a synthetic GPR database for estimation of
soil moisture.

2) Development of a regression model to estimate soil
moisture with a high degree of accuracy.

II. GPR DATA

GprMax, an open source electromagnetic simulator, is used
to generate the database. It uses FDTD method for simulation
of GPR model. Each simulated model has dimensions of
1000mm×400mm×600mm (X×Y ×Z). The top 200 mm
of the model’s overall height, i.e. 600 mm, is an air layer, while
the remaining 400 mm is a soil layer. Soil moisture is varied
randomly between 1% and 10% and the corresponding values
of relative permittivity (εr) and conductivity (σ) are used in
simulation. Table I shows the soil permittivity and conductivity
as a function of moisture content [23]. For fractional values
of soil moisture, the corresponding values of εr and σ are
intrapolated.

TABLE I
RELATIVE PERMITTIVITY AND CONDUCTIVITY CORRESPONDING TO

MOISTURE CONTENT IN SOIL

S. No. Soil Moisture
Relative

Permitivity
εr

Conductivity
σ(S/m)
×10−6

1 1% 3.2343 9.9
2 2% 3.4686 18.8
3 3% 3.7029 27.7
4 4% 3.9372 36.6
5 6% 4.4058 54.5
6 7% 4.6401 63.4
7 8% 4.8744 72.3
8 9% 5.1087 81.2
9 10% 5.343 90.1

A cylindrical object of aluminium (εr = 10.8 and σ = 3.5×
107 S/m) is placed underneath the soil surface. The object
depth varies from 25 mm to 365 mm from the top of the soil
layer and the object radius has values between 9 mm to 20
mm. The depth and radius values are chosen randomly using
a program. A simulated model with a cylindrical object buried
in the soil is shown in Figure 1.

The simulation time window must be long enough for the
EM waves to travel through the medium to the cylindrical
object and then reflect back to the receiver. However, the time
window depends on the relative permittivity of the soil. In this
case, the value of time window is taken such that it is suitable
for all the different values of soil moisture. The different
parameters used while simulating the GPR models are given
in Table II. A simulated A-Scan having 6% of moisture in soil
is shown in Figure 2.

Fig. 1. Simulated model

TABLE II
SIMULATION PARAMETERS

Sl. No. Simulation
Parameter Values

1 Excitation waveform Gaussian
2 Frequency used 400 MHz
3 Spatial resolution 2 mm
4 Time window 12 ns

Fig. 2. Simulated A-Scan

A total of 2690 A-Scans are generated, each having 3113
data points along the depth of the model. The dataset contains
around 8 million data points. NVIDIA GPU RTX3090 is used
to accelerate the simulation and generate the dataset. 85% of
the dataset is used to train and validate the model and 15%
of it is kept for testing the model. The dataset is normalised
before training the model.

III. METHODOLOGY

In this work, an ANN model is used. An ANN model
consists of multiple layers, each of which has one or more
neurons or units. Each of these neurons is linked to every other
neuron in the following layer. In ANN, feature extraction is
performed hierarchically, with increments after each layer.

Forward propagation and back propagation are the two
stages of ANN. Forward propagation entails assigning weights



Fig. 3. Proposed ANN architecture

and biases to each neuron in a layer, as well as applying an
activation function to each neuron. A loss function is used
to calculate the error between the true and predicted values.
Using an optimisation function, backward propagation assists
in determining optimal parameter values for the model, by
minimising the loss function.

A. Proposed model

Initially, 3113 neurons were used in the input layer. Multiple
hidden layers were added after the input layer which had half
the number of neurons than the previous layers. After tuning
the number of neurons through multiple training runs, the
optimised model is found to have 3100 units in the input layer,
followed by 6 hidden layers having 1500, 750, 375, 187, 95
and 47 units respectively, as shown in Figure 3. The output
layer contains a single unit that produces the predicted values.
All the layers in the neural network implement the function:

output = activation(dot(input, kernel) + bias) (1)

where activation is the activation function for the layer,
kernel is the weights matrix created by the layer, bias is the
bias vector created by the layer.

Each layer’s activation function is a Rectified Linear Unit
(ReLU), which can be described mathematically as shown in
2

f(x) = max(0, x) (2)

,where x is a neuron’s input.
If x is less than zero, the activation function f(x) returns 0;

otherwise, it returns x (input). To train a deep learning model,
the input data is fed to the model and predictions are generated.
The predicted values are compared to the actual values and
the loss is calculated using a loss function. The loss function

used in this study is Mean Absolute Percentage Error (MAPE).
Adaptive gradient (AdaGrad) algorithm is used to optimise
the model with an initial learning of 1 × 10−5. The training
and validation losses over 300 epochs is shown in Figure 4.
The GPR data processing pipeline is written in python along
with Keras and Tensorflow frameworks for application of deep
learning algorithms.

Fig. 4. Loss curve during training and validation of the model

IV. RESULTS

429 A-Scans are used for final performance evaluation of
the proposed model. The best and worst predicted values
corresponding the different values of soil moisture are given
in Table III. Moreover, different metrics such as mean squared
error (MSE), mean absolute error (MAE), mean squared
logarithmic error (MSLE), mean absolute percentage error
(MAPE) and R-squared are used to analyse the performance
of the ANN model as given in Table IV.



TABLE III
PREDICTED VALUES OF SOIL MOISTURE BY THE ANN MODEL

Sl. No. True
Value (%)

Best Predicted
Value (%)

Worst Predicted
Value (%)

Median of
Predicted Values (%)

1 1 0.999 1.467 0.999
2 2 2.002 1.908 1.992
3 3 2.999 3.451 3.008
4 4 3.999 4.244 4.005
5 6 6.000 6.342 6.008
6 7 7.001 7.355 7.009
7 8 8.001 7.737 8.014
8 9 8.999 9.536 9.033
9 10 10.000 9.488 9.927

TABLE IV
PERFORMANCE METRICS OF THE ANN MODEL

Metrics Performance of the ANN model

MSE 9.562× 10−7

MAE 0.00055
MAPE 1.232291
MSLE 8.344× 10−7

R-squared 0.998

V. CONCLUSION

This study presented a ANN model for estimating soil
moisture from GPR A-Scan data. The overall performance of
the model was evaluated using the metrics listed in Table IV.
The most popular statistical metric for a regression problem
is R-squared whose value lies between 0 and 1. In order for
a regression model to be reliable, the value should be greater
than 0.95. The proposed model achieves an R-squared value
of 0.998 and MAPE of 1.23 on the test set, demonstrating its
high reliability.

A comparison with previously reported literature work is
shown in Table V. Most of the techniques used to estimate
soil moisture are invasive in nature. Moreover, soil moisture
estimation was done using satellite data and laboratory-based
methods, which rarely produced results in real time. The
proposed work uses GPR, non-invasive method, to collect
data. This will lead to faster data collection and is capable
of producing results in real time.

TABLE V
COMPARISON OF PRESENT WORK WITH PAST STUDIES

Sl. No. Authors Technique used Real time/
Offline R2

1 Lee et al.
(2018) [24]

Deep neural network applied on remotely sensed
satellite data (non-invasive)

Offline 0.79

2 Koley et al.
(2020) [25]

Surface soil moisture estimated using LST-
NDVI feature space from satellite data (non-
invasive)

Offline 0.8

3 Taneja et al.
(2021) [22]

Machine learning algorithms applied on soil
sample images collected using cell phone. (in-
vasive)

Offline 0.95

4 Present work ANN applied on GPR data (non-invasive) Real time 0.998

However, the proposed model is trained and tested in dataset
with limited variation of soil moisture. In real scenarios,
different environmental factors might lead to large variations

in soil moisture. To improve the proposed model, the authors
plan to implement the proposed model on real data.
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