Articles
Size estimation of underground targets from GPR frequency spectra: A deep learning approach
Abstract . GPR (Ground Penetrating Radar) is a robust and effective device for identifying underground artefacts. Construction companies and civil engineers should be aware of the sizes of rebars and pipelines before and during construction work for various reasons. Most research efforts have typically concentrated on GPR signal analysis in...
Read MoreEstimation of soil moisture from GPR data using Artificial Neural Networks
Soil moisture estimation is essential for understanding the water cycle and its impact on weather and climate. GPR based soil moisture estimation is non-invasive in nature and provides quicker results as compared to standard laboratory approaches. Deep learning algorithms have been shown to be an effective method for extracting characteristics...
Read MoreA CNN model for predicting size of buried objects from GPR B-Scans
Abstract . A convolutional neural networks (CNN) model for predicting size of buried objects from ground penetrating radar (GPR) B-Scans is proposed. As a pre-processing step, Sobel, Laplacian, Scharr, and Canny operators are used for edge detection of the hyperbolic features. The proposed CNN architecture extracts high level signatures in...
Read MoreClassification of Soil Types from GPR B-Scans using Deep Learning Techniques
Abstract . Traditional methods for classification of soil types are time consuming, invasive and expensive. A non-invasive method like ground penetrating radar (GPR) provides a suitable way to classify soil types based on its electromagnetic properties. Deep learning algorithms have proven to be an effective tool for features extraction of...
Read More